LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QB, Astrophysics - Astrophysics of Galaxies, QC, Astrophysics - High Energy Astrophysical Phenomena

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::High Energy Astrophysical Phenomena
We present Hubble Space Telescope (HST) Wide Field Camera 3 UV and near-IR (nIR) imaging of 21 Superluminous Supernovae (SLSNe) host galaxies, providing a sensitive probe of star formation and stellar mass within the hosts. Comparing the photometric and morphological properties of these host galaxies with those of core-collapse supernovae (CCSNe) and long-duration gamma-ray bursts (LGRBs), we find SLSN hosts are fainter and more compact at both UV and nIR wavelengths, in some cases we barely recover hosts with absolute magnitude around MV ≈ −14. With the addition of ground based optical observations and archival results, we produce spectral energy distribution fits to these hosts, and show that SLSN hosts possess lower stellar mass and star formation rates. This is most pronounced for the hydrogen deficient Type-I SLSN hosts, although Type-II H-rich SLSN host galaxies remain distinct from the bulk of CCSNe, spanning a remarkably broad range of absolute magnitudes, with ∼30 per cent of SLSNe-II arising from galaxies fainter than MnIR ∼ −14. The detection of our faintest SLSN hosts increases the confidence that SLSNe-I hosts are distinct from those of LGRBs in star formation rate and stellar mass, and suggests that apparent similarities in metallicity may be due to the limited fraction of hosts for which emission line metallicity measurements are feasible. The broad range of luminosities of SLSN-II hosts is difficult to describe by metallicity cuts, and does not match the expectations of any reasonable UV-weighted luminosity function, suggesting additional environmental constraints are likely necessary to yield hydrogen rich SLSNe.\ud \ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abazajian K. N. et al., 2009, ApJS, 182, 543
    • Ahn C. P. et al., 2012, ApJS, 203, 21
    • Anderson J., Bedin L. R., 2010, PASP, 122, 1035
    • Anderson J. P., Habergham S. M., James P. A., Hamuy M., 2012, MNRAS, 424, 1372
    • Appenzeller I. et al., 1998, The messenger, 94, 1
    • Baldry I. K. et al., 2005, MNRAS, 358, 441
    • Barbary K. et al., 2009, ApJ, 690, 1358
    • Bastian N., 2008, MNRAS, 390, 759
    • Bertin E., Arnouts S., 1996, A&AS, 117, 393
    • Blanton M. R., Lupton R. H., Schlegel D. J., Strauss M. A., Brinkmann J., Fukugita M., Loveday J., 2005, ApJ, 631, 208
    • Bloom J. S., Kulkarni S. R., Djorgovski S. G., 2002, AJ, 123, 1111
    • Bloom J. S. et al., 2009, ApJ, 691, 723
    • Bonnell I. A., Clarke C. J., Bate M. R., Pringle J. E., 2001, MNRAS, 324, 573
    • Bourque M. et al., 2013, American Astronomical Society Meeting Abstracts, Vol. 222, p. 316.11
    • Cano Z., 2013, MNRAS, 434, 1098
    • Castro Cero´n J. M., Michałowski M. J., Hjorth J., Watson D., Fynbo J. P. U., Gorosabel J., 2006, ApJ, 653, L85
    • Chatzopoulos E. et al., 2011, ApJ, 729, 143
    • Chen T. W. et al., 2015, MNRAS, 452, 1567
    • Chevalier R. A., Irwin C. M., 2011, ApJ, 729, L6
    • Cirasuolo M. et al., 2007, MNRAS, 380, 585
    • Cooke J. et al., 2012, Nature, 491, 228
    • Cool R. J. et al., 2007, GCN Circ., 6510, 1
    • Crowther P. A., Schnurr O., Hirschi R., Yusof N., Parker R. J., Goodwin S. P., Kassim H. A., 2010, MNRAS, 408, 731
    • Dahlen T. et al., 2003, BAAS, 35, 1278
    • Davies B., Figer D. F., Kudritzki R.-P., Trombley C., Kouveliotou C., Wachter S., 2009, ApJ, 707, 844
    • De Becker M., Rauw G., Manfroid J., Eenens P., 2006, A&A, 456, 1121
    • Dexter J., Kasen D., 2013, ApJ, 772, 30
    • Drake A. J. et al., 2009, ApJ, 696, 870
    • Drake A. J. et al., 2010, ApJ, 718, L127
    • Dressel L., 2012, Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0.
    • Drout M. R. et al., 2011, ApJ, 741, 97
    • Eldridge J. J., Izzard R. G., Tout C. A., 2008, MNRAS, 384, 1109
    • Elliott J. et al., 2013, A&A, 556, A23
    • Fox O. D. et al., 2015, MNRAS, 454, 4366
    • Fruchter A. S., Hook R. N., 2002, PASP, 114, 144
    • Fruchter A. S. et al., 2006, Nature, 441, 463
    • Fynbo J. P. U. et al., 2009, ApJS, 185, 526
    • Gal-Yam A., 2012, Science, 337, 927
    • Gal-Yam A. et al., 2009, Nature, 462, 624
    • Ga¨nsicke B. T., Levan A. J., Marsh T. R., Wheatley P. J., 2009, ApJ, 697, L129
    • Germany L. M., Reiss D. J., Sadler E. M., Schmidt B. P., Stubbs C. W., 2000, ApJ, 533, 320
    • Gezari S. et al., 2009, ApJ, 690, 1313
    • Graham J. F., Fruchter A. S., 2013, ApJ, 774, 119
    • Greiner J. et al., 2015, Nature, 523, 189
    • Gvaramadze V. V., Kniazev A. Y., Chene´ A.-N., Schnurr O., 2013, MNRAS, 430
    • Hainich R. et al., 2014, A&A, 565, A27
    • Hammer F., Flores H., Schaerer D., Dessauges-Zavadsky M., Le Floc'h E., Puech M., 2006, A&A, 454, 103
    • Hamuy M. et al., 2003, Nature, 424, 651
    • Harris W. E., 1996, AJ, 112, 1487
    • Heger A., Woosley S. E., 2002, ApJ, 567, 532
    • Hjorth J. et al., 2012, ApJ, 756, 187
    • Holland S. T. et al., 2010, ApJ, 717, 223
    • Howell D. A. et al., 2013, ApJ, 779, 98
    • Hudelot P. et al., 2012, VizieR Online Data Catalog, 2317, 0
    • Inserra C., Smartt S. J., 2014, ApJ, 796, 87
    • Inserra C. et al., 2013, ApJ, 770, 128
    • Jakobsson P. et al., 2006, A&A, 447, 897
    • James P. A., Anderson J. P., 2006, A&A, 453, 57
    • Kaiser N., Pan-STARRS Team, 2005, BAAS, 37, 150.04
    • Kasen D., Bildsten L., 2010, ApJ, 717, 245
    • Kelly P. L., Kirshner R. P., Pahre M., 2008, ApJ, 687, 1201
    • Kelly P. L., Hicken M., Burke D. L., Mandel K. S., Kirshner R. P., 2010, ApJ, 715, 743
    • Kelly P. L., Filippenko A. V., Modjaz M., Kocevski D., 2014, ApJ, 789, 23
    • Kennicutt R. C., Jr, 1998, ARA&A, 36, 189
    • Knop R. et al., 1999, IAU Circ., 7128, 1
    • Kochanek C. S., 2014, ApJ, 785, 28
    • Kru¨hler T. et al., 2011, A&A, 534, A108
    • Larson D. et al., 2011, ApJS, 192, 16
    • Larsson J., Levan A. J., Davies M. B., Fruchter A. S., 2007, MNRAS, 376, 1285
    • Law N. M., Kulkarni S., Ofek E., Quimby R., Kasliwal M., Palomar Transient Factory Collaboration, 2009, BAAS, 41, 469.01
    • Leloudas G. et al., 2012, A&A, 541, A129
    • Leloudas G. et al., 2015, MNRAS, 449, 917
    • Lennarz D., Altmann D., Wiebusch C., 2012, A&A, 538, A120
    • Levan A. J. et al., 2007, MNRAS, 378, 1439
    • Levan A. J., Read A. M., Metzger B. D., Wheatley P. J., Tanvir N. R., 2013, ApJ, 771, 136
    • Levan A. J. et al., 2014a, ApJ, 781, 13
    • Levan A. J. et al., 2014b, ApJ, 792, 115
    • Lunnan R. et al., 2014, ApJ, 787, 138
    • Lunnan R. et al., 2015, ApJ, 804, 90
    • Lyman J., Bersier D., James P., Mazzali P., Eldridge J., Fraser M., Pian E., 2016, MNRAS, 457, 328
    • McConnachie A. W., 2012, AJ, 144, 4
    • McBreen S. et al., 2010, A&A, 516, A71
    • Mazzali P. A., McFadyen A. I., Woosley S. E., Pian E., Tanaka M., 2014, MNRAS, 443, 67
    • Mereghetti S., Pons J. A., Melatos A., 2015, Space Sci. Rev., 191, 315
    • Metzger B. D., Giannios D., Thompson T. A., Bucciantini N., Quataert E., 2011, MNRAS, 413, 2031
    • Miller A. A. et al., 2009, ApJ, 690, 1303
    • Miller A. A., Smith N., Li W., Bloom J. S., Chornock R., Filippenko A. V., Prochaska J. X., 2010, AJ, 139, 2218
    • Modjaz M. et al., 2008, AJ, 135, 1136
    • Neill J. D. et al., 2011, ApJ, 727, 15
    • Nicholl M. et al., 2013, Nature, 502, 346
    • Nicholl M. et al., 2015, ApJ, 807, L18
    • Ofek E. O. et al., 2007, ApJ, 659, L13
    • Oke J. B. et al., 1995, PASP, 107, 375
    • Pe´rez-Ram´ırez D. et al., 2013, in Castro-Tirado A. J., Gorosabel J., Park I. H., eds, Gamma-ray Bursts: 15 Years of GRB Afterglows. EAS Publ. Ser. Vol. 61, p. 345
    • Perley D. A. et al., 2013, ApJ, 778, 128
    • Perley D. A. et al., 2015, ApJ, 801, 102
    • Perley D. A. et al., 2016, ApJ, 817, 8
    • Piskunov A. E., Kharchenko N. V., Schilbach E., Ro¨ser S., Scholz R.-D., Zinnecker H., 2009, A&A, 507, L5
    • Podsiadlowski P., Joss P. C., Hsu J. J. L., 1992, ApJ, 391, 246
    • Prieto J. L., Stanek K. Z., Beacom J. F., 2008, ApJ, 673, 999
    • Quimby R. M., Aldering G., Wheeler J. C., Ho¨flich P., Akerlof C. W., Rykoff E. S., 2007, ApJ, 668, L99
    • Quimby R. M. et al., 2010, Astron. Telegram, 2979, 1
    • Quimby R. M. et al., 2011a, Nature, 474, 487
    • Quimby R. M. et al., 2011b, Astron. Telegram, 3465, 1
    • Racusin J. L. et al., 2009, ApJ, 698, 43
    • Rakavy G., Shaviv G., 1967, ApJ, 148, 803
    • Raskin C., Scannapieco E., Rhoads J., Della Valle M., 2008, ApJ, 689, 358
    • Rauw G., De Becker M., 2004, A&A, 421, 693
    • Rawlings S., Lacy M., Blundell K. M., Eales S. A., Bunker A. J., Garrington S. T., 1996, Nature, 383, 502
    • Resmi L. et al., 2012, MNRAS, 427, 288
    • Richardson D., Branch D., Casebeer D., Millard J., Thomas R. C., Baron E., 2002, AJ, 123, 745
    • Riess A. G. et al., 2007, ApJ, 659, 98
    • Table A4. Above: core-collapse SNe drawn the 1GOODS sample and from 2Sanders et al. (2012) and 3Lennarz, Altmann & Wiebusch
    • (2012). Below: LGRBs from Ghosts 4Savaglio et al. (2009, and references therein), 5Resmi et al. (2012), 6Hjorth et al. (2012),7Sollerman
    • et al. (2007), 8Perley et al. (2013), 9Levan et al. (2007), 10Cool et al. (2007), 11Tanvir et al. (2010), 12Kru¨ hler et al. (2011), 13McBreen
    • et al. (2010), 14Holland et al. (2010), 15Vergani et al. (2011), 16Starling et al. (2011), 17Abazajian et al. (2009), 18Pe´rez-Ram´ırez et al.
    • (2013), 19Elliott et al. (2013), 20Levan et al. (2014b), 21Schulze et al. (2014).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article