LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Strongly Correlated Electrons, Condensed Matter::Materials Science
Magnonics explores precessional excitations of ordered spins in magnetic materials—so-called spin waves—and their use as information and signal carriers within networks of magnonic waveguides. Here, we demonstrate that the nonuniformity of the internal magnetic field and magnetization inherent to magnetic structures creates a medium of graded refractive index for propagating magnetostatic waves and can be used to steer their propagation. The character of the nonuniformity can be tuned and potentially programmed using the applied magnetic field, which opens exciting prospects for the field of graded-index magnonics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, New York, 1996).
    • [2] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010), and references therein.
    • [3] M. Krawczyk and D. Grundler, J. Phys.: Condens. Matter 26, 123202 (2014), and references therein.
    • [4] International Technology Roadmap for Semiconductors (ITRS) 2013 edition: Emerging Research Devices, http://www.itrs.net/ Links/2013ITRS/Summary2013.htm (accessed 9 May 2014).
    • [5] S. Trudel, O. Gaier, J. Hamrle, and B. Hillebrands, J. Phys. D: Appl. Phys. 43, 193001 (2010), and references therein.
    • [6] T. Schwarze and D. Grundler, Appl. Phys. Lett. 102, 222412 (2013).
    • [7] E. W. Marchand, Gradient Index Optics (Academic Press, London, 1978).
    • [8] Y. Au, M. Dvornik, O. Dmytriiev, and V. V. Kruglyak, Appl. Phys. Lett. 100, 172408 (2012).
    • [9] R. Huber, T. Schwarze, and D. Grundler, Phys. Rev. B 88, 100405 (2013).
    • [10] J. Jorzick, S. O. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K. Y. Guslienko, A. N. Slavin, D. V. Berkov, and N. L. Gorn, Phys. Rev. Lett. 88, 047204 (2002).
    • [11] C. Bayer, J. P. Park, H. Wang, M. Yan, C. E. Campbell, and P. A. Crowell, Phys. Rev. B 69, 134401 (2004).
    • [12] V. E. Demidov, S. O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss, Appl. Phys. Lett. 92, 232503 (2008).
    • [13] G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler, Phys. Rev. Lett. 108, 227202 (2012).
    • [14] X. Xing, Y. Yu, S. Li, and X. Huang, Sci. Rep. 3, 2958 (2013).
    • [15] K. Vogt, F. Y. Fradin, J. E. Pearson, T. Sebastian, S. D. Bader, B. Hillebrands, A. Hoffmann, and H. Schultheiss, Nat. Commun. 5, 3727 (2014).
    • [16] V. E. Demidov, J. Jersch, S. O. Demokritov, K. Rott, P. Krzysteczko, and G. Reiss, Phys. Rev. B 79, 054417 (2009).
    • [17] V. E. Demidov, M. P. Kostylev, K. Rott, J. Mu¨nchenberger, G. Reiss, and S. O. Demokritov, Appl. Phys. Lett. 99, 082507 (2011).
    • [18] H. G. Bauer, J.-Y. Chauleau, G. Woltersdorf, and C. H. Back, Appl. Phys. Lett. 104, 102404 (2014).
    • [19] Y. Au, T. Davison, E. Ahmed, P. S. Keatley, R. J. Hicken, and V. V. Kruglyak, Appl. Phys. Lett. 98, 122506 (2011).
    • [20] M. Arikan, Y. Au, G. Vasile, S. Ingvarsson, and V. V. Kruglyak, J. Phys. D: Appl. Phys. 46, 135003 (2013).
    • [21] R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).
    • [22] B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013 (1986).
    • [23] A. V. Vashkovsky and E. H. Lock, Phys. Usp. 49, 389 (2006).
    • [24] V. Veerakumar and R. E. Camley, Phys. Rev. B 74, 214401 (2006).
    • [25] V. E. Demidov, S. O. Demokritov, D. Birt, B. O'Gorman, M. Tsoi, and X. Li, Phys. Rev. B 80, 014429 (2009).
    • [26] T. Schneider, A. A. Serga, A. V. Chumak, C. W. Sandweg, S. Trudel, S. Wolff, M. P. Kostylev, V. S. Tiberkevich, A. N. Slavin, and B. Hillebrands, Phys. Rev. Lett. 104, 197203 (2010).
    • [27] S. Mansfeld, J. Topp, K. Martens, J. N. Toedt, W. Hansen, D. Heitmann, and S. Mendach, Phys. Rev. Lett. 108, 047204 (2012).
    • [28] Y. Au, M. Dvornik, T. Davison, E. Ahmad, P. S. Keatley, A. Vansteenkiste, B. Van Waeyenberge, and V. V. Kruglyak, Phys. Rev. Lett. 110, 097201 (2013).
    • [29] T. Sebastian, T. Bra¨cher, P. Pirro, A. A. Serga, B. Hillebrands, T. Kubota, H. Naganuma, M. Oogane, and Y. Ando, Phys. Rev. Lett. 110, 067201 (2013).
    • [30] R. Gieniusz, H. Ulrichs, V. D. Bessonov, U. Guzowska, A. I. Stognii, and A. Maziewski, Appl. Phys. Lett. 102, 102409 (2013).
    • [31] A. V. Vashkovskii, A. V. Stalmakhov, and D. G. Shakhnazaryan, Izv. Vyssh. Uchebn. Zaved., Fiz. 31, 67 (1988).
    • [32] A. V. Vashkovskii and V. I. Zubkov, J. Commun. Technol. Electron. 48, 131 (2003).
    • [33] A. V. Vashkovskii and E. G. Lokk, Phys. Usp. 47, 601 (2004).
    • [34] E. H. Lock, Phys. Usp. 51, 375 (2008).
    • [35] R. Gieniusz, V. D. Bessonov, U. Guzowska, A. I. Stognii, and A. Maziewski, Appl. Phys. Lett. 104, 082412 (2014).
    • [36] T. Bra¨cher, P. Pirro, J. Westermann, T. Sebastian, B. Lagel, B. Van de Wiele, A. Vansteenkiste, and B. Hillebrands, Appl. Phys. Lett. 102, 132411 (2013).
    • [37] M. Dvornik, Y. Au, and V. V. Kruglyak, Top. Appl. Phys. 125, 101 (2013).
    • [38] E. Schlo¨mann, J. Appl. Phys. 35, 159 (1964).
    • [39] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.92.020408 for additional details of the TRSKM measurements and micromagnetic simulations, and movies of the spin-wave propagation associated with the presented images.
    • [40] L. O'Brien, D. Petit, E. R. Lewis, R. P. Cowburn, D. E. Read, J. Sampaio, H. T. Zeng, and A.-V. Jausovec, Phys. Rev. Lett. 106, 087204 (2011).
    • [41] S. Urazhdin, V. E. Demidov, H. Ulrichs, T. Kendziorczyk, T. Kuhn, J. Leuthold, G. Wilde, and S. O. Demokritov, Nat. Nanotechnol. 9, 509 (2014).
    • [42] This is a spin-wave analog of the mirage effect, well known in transformation optics and photonics [43,44] and recently also demonstrated theoretically in magnonics [45]. The discussion of the effect is, however, beyond the scope of this Rapid Communication.
    • [43] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    • [44] U. Leonhardt, Science 312, 1777 (2006).
    • [45] P. Gruszecki, J. Romero-Vivas, Yu. S. Dadoenkova, N. N. Dadoenkova, I. L. Lyubchanskii, and M. Krawczyk, Appl. Phys. Lett. 105, 242406 (2014).
    • [46] X. J. Xing, S. W. Li, X. H. Huang, and Z. G. Wang, AIP Adv. 3, 032144 (2013).
    • [47] V. S. Tkachenko, A. N. Kuchko, M. Dvornik, and V. V. Kruglyak, Appl. Phys. Lett. 101, 152402 (2012).
    • [48] V. S. Tkachenko, A. N. Kuchko, and V. V. Kruglyak, Low Temp. Phys. 39, 163 (2013).
    • [49] R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 93, 257202 (2004).
    • [50] G. Duerr, R. Huber, and D. Grundler, J. Phys.: Condens. Matter 24, 024218 (2012), and references therein.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | NOWAPHEN

Cite this article