LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tonkin, TN (2016)
Languages: English
Types: Doctoral thesis
Subjects:
Recent climatic amelioration during the 20th and 21st centuries has stimulated the recession of glaciers world-wide. Moraines developed by valley glaciers provide a sedimentary record of their past response to climatic forcing. Despite the use of moraines for understanding the character and behaviour of former glaciers, our understanding of moraine development is lacking largely due to limited opportunities to study active moraine formation. This thesis reports on internal structure and sedimentary composition of lateral-frontal moraine at two Arctic (Austre Lovénbreen, Svalbard and Isfallsglaciären, Sweden) glaciers and one Alpine (Schwarzberggletscher, Switzerland) glacier and aids understanding of their palaeo-environmental significance. The internal structure and sedimentary architecture of Arctic lateral-frontal moraine is documented using ground penetrating radar (GPR) and via shallow excavation. Lateral-frontal moraine at both Arctic sites are shown to contain buried ice within their lateral zones, but not within their frontal zones, although the volumetric content of the buried ice and potential origin varies between sites. Frontal zones are therefore likely to be better preserved in the geomorphological record following complete de-icing, whereas lateral zones, which may also be subject to de-icing and external censoring from slope processes, may be poorly preserved. As the internal structure is dissimilar across Arctic sites, it is argued that the processes involved in the development of landforms by Arctic polythermal glaciers vary between high-Arctic and continental Scandinavian settings. Arctic lateral-frontal moraine are also distinct from those found at Alpine sites which are organised into stacked diamicton units that dip away from the lateral margin of the glacier. The sedimentary signature of Arctic and Alpine lateral-frontal moraine are investigated and compared. All moraines investigated exhibit clast-form gradients which is interpreted to relate to the relative significance and spatial variation of ‘active’ and ‘passive’ debris transport mechanisms within Arctic and Alpine valley glacier landsystems. However, the climatic, glaciological, and topographic regimes in which the moraines form influence the resulting character of the landform. The evolution of a degrading ice-cored moraine at Austre Lovénbreen is investigated using repeat photogrammetric topographic surveys. Relict glacier ice is undergoing moderate rates of degradation, predominately via down-wastage and could potentially be preserved as an archive of former high-Arctic glacier characteristics. This thesis also contributes to the wider body of knowledge in relation to the use of unmanned aerial vehicles (UAVs) and ‘Structure-from-Motion’ (SfM) photogrammetry for geomorphological research. The multi-technique approach employed by this research has allowed for the glaciological significance of subsets of lateral-frontal moraine (‘Controlled’, ‘Østrem’ and ‘Alpine’ type) within in glaciated valley landsystem to be better understood. Conceptual models accounting for landform development are presented and aid Quaternary studies that seek to identify and use lateral-frontal moraine for dating past glacier activity and determining palaeo-glacier characteristics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bendle, J.M and Glasser, N.F. 2012. Palaeoclimatic reconstruction from Lateglacial (Younger Dryas Chronozone) cirque glaciers in Snowdonia, North Wales. Proceedings of the Geologists' Association, 123, 130-145.
    • Benedict, J.B. 1993. A 2000-year lichen-snowkill chronology for the Colorado Front Range, USA, The Holocene, 3 (1), 27-33.
    • Benediktsson, Í.Ö., 2012. Polyphase structural evolution of a fine-grained, fold-dominated end moraine, Bruarjökull surge-type glacier, Iceland. Jokull, 62, 167-184.
    • Benn, D.I. 1989. Debris transport by Loch Lomond Readvance glaciers in northern Scotland: basin form and within-valley asymmetry of lateral moraines. Journal of Quaternary Science, 4, 243-54.
    • Benn, D.I. 1994. Fabric shape and the interpretation of sedimentary fabric data. Journal of Sedimentary Research, A64, 910-915.
    • Benn, D.I. 2004a. Clast morphology. In: Evans, D.J.A. and Benn, D.I. (eds.) A Practical Guide to the Study of Glacial Sediments. Arnold, Londonm, pp 77-92.
    • Benn, D.I. 2004b. Macrofabric. In: Evans, D.J.A and Benn, D.I. (eds.) A Practical Guide to the Study of Glacial Sediments. Arnold, London, pp 93-114.
    • Benn, D.I. 2006. Interpreting glacial sediments. In: Knight. P.G (ed.) Glacier science and environmental change, Wiley-Blackwell, Chichester, pp 434-439.
    • Benn, D.I. and Ballantyne, C.K. 1993. The description and representation of particle shape. Earth Surface Processes and Landforms, 18 (7), 665-672.
    • Benn, D.I. and Ballantyne, C.K. 1994. Reconstructing the transport history of glacigenic sediments - a new approach based on the co-variance of clast form indices. Sedimentary Geology, 91 (1-4): 215-227.
    • Benn, D.I. and Evans, D.J.A. 2010. Glaciers and Glaciation. Taylor and Francis, London.
    • Benn, D.I. and Lehmkuhl, F. 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65-66, 15-29.
    • Benn, D.I. and Owen, L.A. 2002. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International, 97-98, 3-25.
    • Benn, D.I., Kirkbride, M.P., Owen, L.A., Brazier, V., 2003. Glaciated valley landsystems. In: Evans, D.J.A. (Ed.), Glacial Landsystems. Oxford University press, 372-406.
    • Benn, D.I. and Lukas, S. 2006. Younger Dryas glacial landsystems in North West Scotland: An assessment of modern analogues and palaeoclimatic implications. Quaternary Science Reviews, 25, 2390-2408.
    • Bennett, G.L. and Evans, D.J.A. 2012. Glacier retreat and landform production on an overdeepened glacier foreland: the debris-charged glacial landsystem at Kvíárjökull, Iceland. Earth Surface Processes and Landforms, 37 (15), 1584-1602.
    • Bennett, M.R. 1999. Paraglacial and periglacial slope adjustment of a degraded lateral moraine in Glen Torridon, Scottish Journal of Geology, 35, 79-83.
    • Bennett, M.R. 2001. The morphology, structural evolution and significance of push moraines, Earth-Science Reviews, 53 (3-4), 197-236.
    • Bennett, M.R. and Glasser, N.F. 2009. Glacial Geology: Ice sheets and landforms, 2nd Edition. Wiley-Blackwell, Chichester.
    • Bennett, M.R., Hambrey, M.J. and Huddart, D. 1997. Modification of clast shape in highArctic glacial environments. Journal of Sedimentary Research, A67 (3): 550-559.
    • Bennett, M.R., Hambrey, M.J., Huddart, D. and Glasser, N.F., 1998. Glacial thrusting and moraine-mound formation in Svalbard and Britain: the example of Coire a' Cheudchnoic (Valley of hundred hills), Torridon, Scotland. Quaternary Proceedings, 6, 17-34.
    • Bennett, M.R., Huddart, D., Glasser, N.F. and Hambrey, M.J. 2000. Resedimentation of debris on an ice-cored lateral moraine in the high-Arctic (Kongsvegen, Svalbard). Geomorphology, 35 (1-2), 21-40.
    • Bennett, M.R., Huddart, D., Hambrey, M.J. and Ghienne, J.F. 1996. Moraine Development at the High-Arctic Valley Glacier Pedersenbreen, Svalbard. Geografiska Annaler. Series A, Physical Geography, 78 (4), 209-222.
    • Bennett, M.R., Waller, R.I., Glasser, N.F., Hambrey, M.J. and Huddart, D. 1999b. Glacigenic clast fabrics: genetic fingerprint or wishful thinking? Journal of Quaternary Science, 14, 124-135.
    • Bernhardsen, T. 2002. Geographic Information Systems: An Introduction. John Wiley & Sons, New York, pp 448.
    • Berthling, I. 2011. Beyond Confusion: Rock glacier as cryo-conditioned landforms. Geomorphology, 131. 98-106.
    • Beuselinck, L., Govers, G., Poesen, J., Dagraer, G. and Froyen, L. 1998. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method. Catena, 32 (3-4), 193-208.
    • Bircher, W. 1982: Zur Gletscher- und Klimageschichte des Saas-tales. Unpublished PhD thesis, Zurich University.
    • Birnie, R.V. 1977. A snow-bank push mechanism for the formation of some "annual" moraine ridges. Journal of Glaciology, 18 (78), 77-85.
    • Bishop, M.P., James, L.A., Shroder Jr, J.F. and Walsh, S.J. 2012. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137 (1), 5-26.
    • Blott, S.J. and Pye, K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26: 1237-1248.
    • Blott, S.J., Croft, D.J., Pye, K., Saye, S.E. and Wilson, H.E. 2004. Particle size analysis by laser diffraction. In: Pye, K. and Croft, D. (eds.), Forensic Geoscience: Principles, Techniques, and Applications. Geological Society London, Special Publications, 232, pp 63-73.
    • Borradaile, G.J. 2003. Statistics of Earth Science Data. Springer-Verlag, Berlin.
    • Boulton, G, van der Meer, JJM, Beets, DJ, Hart, JK & Ruegg, GHJ 1999. The sedimentary and structural evolution of a recent push moraine complex: Holmstrombreen, Spitsbergen. Quaternary Science Reviews, 18, 339-371.
    • Boulton, G. S. and Eyles, N. 1979. Sedimentation by valley glaciers: a model and genetic classification. In: Schlüchter, C. (ed.) Proceedings of an INQUA symposium on genesis and lithology of Quaternary deposits, Zurich , 10- 20 September 1978. Moraines and varves: origin, genesis, classification. Balkema, Rotterdam, pp 11-23.
    • Boulton, G.S. 1972. Modern Arctic glaciers as depositional models for former ice sheets. Journal of the Geological Society, 128, 361-93.
    • Bradwell, T., Sigurðsson, O. and Everest, J. 2013. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas, 42 (4), 959-973.
    • Brandt, O., Langley, K., Kohler, J. and Hamran, S-K. 2007. Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard. Remote Sensing of the Environment, 111 (2-3): 212-227.
    • Brasington, J., Langham, J. and Rumsby B. 2003. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology, 53 (3-4), 299-316.
    • Brook, M. and Lukas. S. 2012. A revised approach to discriminating sediment transport histories in glacigenic sediments in a temperate alpine environment: a case study from Fox Glacier, New Zealand. Earth Surface Process and Landforms, 37 (8), 895-900.
    • Brook, M.S. and Paine, S., 2012. Ablation of ice-cored moraine in a humid, maritime climate: Fox Glacier, New Zealand. Geografiska Annaler: Series A, Physical Geography, 94, 339-349.
    • Brugger, K.A. 1996. Implications of till-provenance studies for glaciological reconstructions of the paleoglaciers of Wildhorse Canyon, Idaho, U.S.A. Annals of Glaciology, 22, 93-101.
    • Burki, V. 2009. Glacial remobilization cycles as revealed by lateral moraine sediment, Bødalsbreen glacier foreland, western Norway. The Holocene, 19 (3), 415-426.
    • Burki, V., Hansen, L., Fredin, O., Andersen, T.A., Beylich, A.A., Jaboyedoff, M., Larsen, E., Tønnesen, J.-F. 2010. Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, 39 (3), 551-566.
    • CAA. 2012. CAP 722 Unmanned aircraft system operations in UK airspace - guidance (5th Edition). The Stationery Office, Norwich, pp 110.
    • Carr, S.J., Lukas, S. and Mills, S.C. 2010. Glacier reconstruction and mass-balance modelling as a geomorphic and palaeoclimatic tool. Earth Surface Process and Landforms, 35, 1103-1115.
    • Carrivick J.L., Geilhausen, M., Warburton, J., Dickson, N.E., Carver, S.J., Evans, A.J. and Brown, L.E. 2012b. Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology, 188, 83-95.
    • Carrivick, J.L. Bethan, B.J., Glasser, N.F., Nývlt, D. and Hambrey, M.J. 2012a. LateHolocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. Journal of Glaciology, 58 (212), 1176-1190.
    • Carrivick, J.L., Smith, M.W., Quincey, D.J. and Carver, S.J. 2013b. Developments in budget remote sensing for the geosciences. Geology Today, 29 (4), 138-143.
    • Cassidy, N.J. 2009. Ground Penetrating Radar Data Processing, Modelling and Analysis. In Ground Penetrating Radar: Theory and Applications. Jol, H.M. (Ed.). Elsevier.
    • Chandler, D.M. and Hubbard, B. 2008. Quantifying sample bias in clast fabric measurements. Sedimentology, 55, 925-938.
    • Chesworth, W., Perez-Alberti, A. and Arnaud, E. 2008. Ice Erosion. In: Chesworth, W. (ed.) Encyclopedia of Soil Science. Spring-Verlag, New York, pp 333-338.
    • Clapuyt, F., Vanacker, V., Van Oost, K. 2015. Reproducibility of uav-based earth topography reconstructions based on structure-from-motion algorithms. Geomorphology, In press.
    • Clark, D.H., Clark, M.M. and Gillespie, A.R. 1994. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions. Quaternary Research, 41 (2), 139-153.
    • Collomb, E., 1847. Preuves de l'existence d'anciens glaciers dans les vallées des Vosges. Victor Masson, Paris, pp 246.
    • Conyers, 2012. Interpreting Ground-penetrating Radar for Archaeology. Left Coast Press Inc., California.
    • Cook S.J., Graham, D.J., Swift, D.A., Midgley, N.G. and Adam, W.G. 2011. Sedimentary signatures of basal ice formation and their preservation in ice-marginal sediments. Geomorphology, 25 (1), 122-131.
    • Cook S.J., Porter, P.R. and Bendall, C.A. 2013. Geomorphological consequences of a glacier advance across a paraglacial rock avalanche deposit. Geomorphology, 189, 109- 120.
    • Cook, S.J., Tonkin, T.N., Midgley, N.G. and Wicikowski, A. 2015. Analysis of 'hummocky moraine' using Structure-from-Motion photogrammetry. North West Geography, 15 (1), 9-18.
    • Curry, A. and Ballantyne, C.K. (1999) Paraglacial modification of hillslope glacigenic drift. Geografiska Annaler, 81A, 409-419.
    • Curry, A.M., Cleasby, V., and Zukowskyj, P. 2006. Paraglacial response of steep, sediment-mantled slopes to post-'Little Ice Age' glacier recession in the central Swiss Alps. Journal of Quaternary Science, 21 (3), 211-225.
    • Curry, A.M., Sands, T.B. and Porter, P.R. 2009. Geotechnical controls on a steep lateral moraine undergoing paraglacial slope adjustment. In: Periglacial and Paraglacial Dandois, J.P. and Ellis, E.C. 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136, 259-276.
    • Darwin, C. 1842. Notes on the effects produced by the ancient glaciers of Caernavonshire, and on boulders transported by floating ice. Philosophical Magazine, 3, 180-188.
    • Davis, J.L., and A.P. Annan 1989. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37, 531-551.
    • Dewitte, O., Jasselette, J.-C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J. and Demoulin, A. 2008. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99 (1-2), 11-22.
    • DJI. 2013. WooKong-M Waypoint-Altitude Offset Setting. Retrieved: 23/02/2014. http://wiki.dji.com/en/index.php/WooKong-M_Waypoint-Altitude_Offset_Setting Dowdswell, J.A. and Sharp, M. 1986. Characterisation of pebble fabrics in modern terrestrial glacigenic sediments. Sedimentology, 33, 699-710.
    • Driscoll, F.G. 1980. Wastage of the Klutlan ice-cored moraines, Yukon Territory, Canada. Quaternary Research, 14 (1), 31-49.
    • ETH-Bibliothek's Image Archive. 2013. E-Pics image database. Retrieved: 02/09/2013. http://www.e-pics.ethz.ch/
    • Eklund, A. and Hart, J. K. 1996. Glaciotectonic deformation within a flute from the glacier Isfallsglaciären, Sweden. Journal of Quaternary Science, 11, 299-310.
    • Escritt, E.A. 1971. Plumbing the depths of Idwal's moraines. Geographical Magazine, 44, 52-55.
    • Eshel, G., Levy, G.J., Mingelgrin, U. and Singer, M.J. 2004. Critical Evaluation of the Use of Laser Diffraction for Particle-Size Distribution Analysis. Soil Science Society of America Journal, 68 (3), 736-743.
    • Etienne, J.L., Glasser, N.F. and Hambrey, M.J. 2003. Proglacial Sediment-Landform Associations of a Polythermal Glacier: Storglaciären, Northern Sweden. Geografiska Annaler: Series A. 85 (2), 149-164.
    • Etzelmüller, B. 2000. Quantification of thermo-erosion in pro-glacial areas - examples from Svalbard. Zeitschrift Fur Geomorphologie, 44, 343-361.
    • Etzelmüller, B. and Frauenfelder, R. 2009. Factors Controlling The Distribution of Mountain Permafrost in The Northern Hemisphere and Their Influence on Sediment Transfer. Arctic, Antarctic, and Alpine Research, 41 (1), 48-58.
    • Etzelmüller, B. and Hagen, J.O. 2005. Glacier permafrost interaction in arctic and alpine environments - examples from southern Norway and Svalbard. In: Harris, C. & Murton, J. (eds.). Cryospheric systems - Glaciers and Permafrost. British Geological Society, Special Publications, 242, pp 11-27.
    • Etzelmüller, B., Hagen, J.O., Vatne, G., Ødegård, R.S., Sollid, J.L. 1996. Glacier debris accumulation and sediment deformation influenced by permafrost, examples from Svalbard. Annals of Glaciology, 22, 53-62.
    • Evans DJA. 1999. Glacial debris transport and moraine deposition: a case study of the Jardalen cirque complex, Sogn-og-Fjordane,western Norway. Zeitshcrift fur Geomorphologie, 43, 203-234.
    • Evans, D.J.A and England, J. 1991. High-Arctic thrust block moraines. The Canadian Geographer, 35 (1), 93-97.
    • Evans, D.J.A. 2009. Controlled moraines: origins, characteristics and palaeoglaciological implications. Quaternary Science Reviews, 28 (3-4), 183-208.
    • Evans, D.J.A. 2010. Controlled moraine development and debris transport pathways in polythermal plateau icefields: examples from Tungnafellsjökull, Iceland. Earth Surface Processes and Landforms, 35, 1430-1444.
    • Evans, D.J.A. and Hiemstra, J.F. 2005. Till deposition by glacier submarginal, incremental thickening. Earth Surface Processes and Landforms, 30 (13), 1633-1662.
    • Evans, D.J.A., Shulmeister, J. and Hyatt, O. 2010. Sedimentology of latero-frontal moraines and fans on the west coast of South Island, New Zealand. Quaternary Science Reviews, 29, 3790-3811.
    • Everest, J. and Bradwell, T. 2003. Buried glacier ice in southern Iceland and its wider significance. Geomorphology, 52 (3-4), 347-358.
    • Everest, J. and Kubik, P. 2006. The deglaciation of eastern Scotland: cosmogenic 10Be evidence for a Lateglacial stillstand. Journal of Quaternary Science, 21 (1), 95-104.
    • Ewertowski M., Kasprzak L., Szuman I., Tomczyk A.M., 2012. Controlled, ice-cored moraines: sediments and geomorphology. An example from Ragnarbreen, Svalbard. Zeitschrift für Geomorphologie, 56 (1), 53-74.
    • Ewertowski, M. and Tomczyk, A.M. 2015. Quantification of the ice-cored moraines' shortterm dynamics in the high-Arctic glaciers Ebbabreen and Ragnarbreen, Petuniabukta, Svalbard. Geomorphology, 234, 211-227.
    • Ewertowski, M. 2014. Recent transformations in the high-Arctic glacier landsystem, Ragnarbreen, Svalbard. Geografiska Annaler: Series A (Physical Geography), 96, 265-285.
    • Eyles, N. 1983. The glaciated valley landsystem. In: N. Eyles (Ed.). Glacial Geology, Pergamon, Oxford, pp 91-110.
    • Ezter, F.M. and Deanne, R. 1997. Particle size analysis: A comparison of various methods ii. Particle and Particle Systems Characterisation, 14 (6), 278-282.
    • Fisher, P.F. and Tate, N.J. 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography, 30 (4), 467-489.
    • Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., Carbonneau, P.E. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430.
    • Friedt, J.-M., Tolle, F., Bernard, É., Griselin, M., Laffy, D and Marlin, C. 2012. Assessing the relevance of digital elevation models to evaluate glacier mass balance: application to Austre Lovénbreen (Spitsbergen, 79°N). Polar Record, 48 (244), 2-10.
    • Galloway, R.W. 1956. The structure of moraines in Lyngsdalen, North Norway. Journal of Glaciology, 2, 730-733.
    • Gibbons, A.B., Megeath, J.D., Pierce, K.L. 1984. Probability of moraine survival in a succession of glacial advances. Geology, 12, 327-330.
    • Glasser, N.F. and Hambrey, M.J. 2001. Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. Journal of Geological Society, London, 158 (4), 697-707.
    • Glasser N.F., Hambrey, M.J., Crawford K.R., Bennett M.R., Huddart D. 1998. The structural glaciology of Kongsvegen Svalbard and its role in landform genesis. Journal of Glaciology, 44 (146), 136-148.
    • Glasser, N.F. and Hambrey, M.J. 2003. Ice-marginal terrestrial landsystems: Svalbard polythermal glaciers in D.J.A. Evans (Ed.), Glacial Landsystems. Hodder Arnold, London, pp 65-88.
    • Glasser, N.F., Coulsen, S.J., Hodkinson, I.D. and Webb, N.R. 2004. Photographic evidence of the return period of a Svalbard surge-type glacier: a tributary of Pedersenbreen, Kongsfjord. Journal of Glaciology, 50 (169), 307-308.
    • Goodsell, B., Hambrey, M.J. and Glasser, N.F. 2002. Formation of band ogives and associated structures at Bas Glacier d'Arolla, Valais, Switzerland. Journal of Glaciology, 48 (161), 287-300.
    • Goodsell, B., Hambrey, M.J., Glasser, N.F. 2005b. Debris transport in a temperate valley glacier: Haut Glacier d'Arolla, Valais, Switzerland. Journal of Glaciology, 51, 139-146.
    • Goodsell, B., Hambrey, M.J., Glasser, N.F., Nienow, P., Mair, D. 2005a. The structural glaciology of a temperate valley glacier: Haut Glacier d-'Arolla, Valais, Switzerland. Arctic Antarctic and Alpine Research, 37, 218-232.
    • Goudie, A. and Viles, H. 2010. Landscapes and Geomorphology: A Very Short Introduction. Oxford University Press, Oxford.
    • Graham, D.J. 2002. Moraine-mound formation during the Younger Dryas in Britain and the Neoglacial in Svalbard. PhD thesis University of Wales, Aberystwyth.
    • Graham, D.J. and Midgley, N.G. 2000a. Moraine-mound formation by englacial thrusting: the Younger Dryas moraines of Cwm Idwal, North Wales. In: A.J. Maltman, B. Hubbard and M.J. Hambrey (eds.), Deformation of Glacial Materials. London: Geological Society, pp. 321-336.
    • Graham, D.J. and Midgley, N.G. 2000b. Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surface Processes and Landforms, 25 (13): 1473-1477.
    • Graham, D.J. Bennett, M.R., Glasser, N.F., Hambrey, M.J., Huddart, D. and Midgley, N.G. 2007. Comment on: “A test of the englacial thrusting hypothesis of 'hummocky' moraine formation.” Boreas, 36 (1), 103-107.
    • Gray, J.M. 1982. The last glaciers (Loch Lomond Advance) in Snowdonia, North Wales. Geological Journal, 17, 111-133.
    • Grech,V.I and Semenenok, S.H. 1969. The modern dams of Switzerland. Hydrotechnical Construction. 3 (5), 463-473.
    • Grove, J.M. and Switsur, R. 1994. Glacial geological evidence for the medieval warm period. Climatic Change, 26 (2-3), 143-169.
    • Gulley, J. and Benn, D.I. 2007. Structural control of englacial drainage systems in Himalayan debris-covered glaciers. Journal of Glaciology, 53 (182), 399-412.
    • Gusmeroli, A., Jansson, P., Pettersson, R. and Murray, T. 2012. Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989-2009. Journal of Glaciology, 58 (207), 3-10.
    • Haeberli,W., Kääb, A., Paul, F., Chiarle, M., Mortara, G., Mazza, A., and Richardson, S. 2002. A Surge type movement at Ghiacciaio del Belvedere and a developing slope instability in the east face of Monte Rose, Macugnaga, Italian Alps, Norwegian Journal of Geography, 56 (2), 104-111.
    • Hagen, J.O., Liestøl, O., Roland, E., and Jørgensen, T. 1993. Glacier Atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser, 129, Oslo.
    • Hamberg, A. 1894. En resa till norra Ishafvet sommaren 1892. Ymer, 14, 25-61.
    • Hamberg, A., Rabot, C., & Mercanton, P.L., 1930. Commission UGGI des glaciers: Rapport pour 1914 - 1928. Venezia 1930. 1-53.
    • Hambrey, M.J and Ehrmann, W. 2004. Modification of sediment characteristics during glacial transport in high-alpine catchments: Mount Cook area, New Zealand. Boreas, 33 (4) 300-318.
    • Hambrey, M.J. 1994. Glacial Environments. UCL Press, London.
    • Hambrey, M.J. 2011. Structural Glaciology. In Singh, V.P. Singh, P., and Haritashya, U.K. Encyclopedia of Snow, Ice and Glaciers. Springer, Dordrecht, pp 1089-1091.
    • Hambrey, M.J. and Glasser, N.F. 2003. The role of folding and foliation development in the genesis of medial moraines: examples from Svalbard glaciers, Journal of Geology, 111 (4), 471-485.
    • Hambrey, M.J. and Glasser, N.F. 2012. Discriminating glacier thermal and dynamic regimes in the sedimentary record, Sedimentary Geology, 251-252, 1-33.
    • Hambrey, M.J. and Lawson, W. 2000. Structural styles and deformation fields in glaciers: a review. Geological Society, London, Special Publications, 176, 59-83 Hambrey, M.J., Dowdeswell, J.A., Murray, T., Porter, P.R., 1996. Thrusting and debris entrainment in a surging glacier: Bakaninbreen, Svalbard. Annals of Glaciology, 22, 241- 248.
    • Hambrey, M.J., Huddart, D., Bennett, M.R. and Glasser, N.F. 1997. Genesis of "hummocky moraines" by thrusting in glacier ice: evidence from Svalbard and Britain. Journal of the Geological Society, London. 154, 623-632.
    • Hambrey, M.J., Murrary, T., Glasser, N.F., Hubbard, A., Hubbard, B., Stuart, G., Hansen, S. and Kohler, J. 2005. Structure and changing dynamics of a polythermal valley glacier on a centennial time-scale: midre Lovénbreen, Svalbard. Journal of Geophysical Research: Earth Surface, p. F010006.
    • Hambrey, M.J., Quincey, D.J., Glasser, N.F., Reynolds, J.M., Richardson, S.J., Clemmens, S. 2008. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quaternary Science Reviews, 27 (25- 26), 2361-2389.
    • Hansen, S. 2003. From surge-type to non-surge type glacier behaviour: Midre Lovénbreen, Svalbard. Annals of Glaciology, 36, 97-102.
    • Harris, C., Arenson, L.U., Christiansen, H.H., Etzelmüller, B., Fraunfelder, R., Gruber., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K. Kääb, A., Kern-Lütschg, M.A., Lehning, M., Matsuoka, N., Murton, J.B., Nötzlie, J., Philips, M., Ross, N., Seppäläl, M., Springman, S.M. and Mühll, D.V. 2009. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 92 (3-4), 117-171.
    • Hart, J.K. 1990. Proglacial glaciotectonic deformation and the origin of the Cromer Ridge push moraine complex, North Norfolk, England, Boreas, 19 (2), 165-180.
    • Harwin, S. and Lucieer, A. 2012. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 4, 1573-1599.
    • Head K.H. 1992. Manual of Soil Laboratory Testing (Volume 1: soil classification and compaction tests) 2nd Edition. Pentech Press, London.
    • Heyman, J. and Hättestrand, C. 2006. Morphology, distribution and formation of relict marginal moraines in the Swedish mountains. Geografiksa Annaler: Series A, 88 (4): 253- 265.
    • Hicock, S.R., Goff, J.R., Lian, O.B. and Little, E.C. 1996. On the interpretation of subglacial till fabric. Journal of Sedimentary Research, 66: 928-945.
    • Hladik, C. and Alber, M. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of Environment. 121, 224-235.
    • Hoey, T.B. 2004. The size of sedimentary particles. In: Evans, D.J.A and Benn, D.I. (eds.), A Practical Guide to Glacial Sediments. Arnold, London, pp 53-77.
    • Holmlund, P, Karlin, W. and Grudd, H., 1996: Fifty years of mass balance and glacier front observations at the Tarfala Research Station. Geografiska Annaler: Series A, 78 (2- 3), 105-114.
    • Holmlund, P. and Jansson, P. 1999. The Tarfala Mass Balance Programme. Geografiska Annaler: Series A, 81 (4), 621-631.
    • Hooke, R.L. 1973. Flow near the Margin of the Barnes Ice Cap, and the Development of Ice-Cored Moraines. Geological Society of America Bulletin, 84 (12), 3929-3948.
    • Hormes A., Karlén, W. and Possnert, G. 2004. Radiocarbon dating of palaeosol components in moraines in Lapland, northern Sweden. Quaternary Science Reviews, 23 (18-19), 2031-2043.
    • Hubbard, B. and Glasser, N. 2005. Field techniques in glaciology and glacial geomorphology. John Wiley & Sons, New York.
    • Huddart, D. and Hambrey, M. J. 1996. Sedimentary and tectonic development of a higharctic, thrust-moraine complex: Comfortlessbreen, Svalbard. Boreas, 25, 227-243.
    • Hugenholtz, C.H. 2010. Topographic changes of a supply-limited inland parabolic sand dune during the incipient phase of stabilization. Earth Surface Processes and Landforms, 35, (14), 1674-1681.
    • Hugenholtz, C.H., Whitehead, K., Brown, O.W., Barchyn, T.E., Moorman, B.J., LeClair, A., Riddell, K., Hamilton, T. 2013. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 194, 16-24.
    • Humlum, O. 1978. Genesis of Layered Lateral Moraines: Implications for palaeoclimatology, and Lichenometry. Geografisk Tidsskrift, 77: 65-72.
    • Ingólfsson, Ó and Lokrantz, H. 2003. Massive ground ice body of glacial origin at Yugorski Peninsula, arctic Russia. Permafrost and Periglacial Processes, 14 (3), 199-215.
    • Irvine-Fynn, T.D.L,. Barrand, N.E., Porter, P.R., Hodson, A.J., and Murray, T. 2011. Recent High-Arctic proglacial sediment redistribution: a process perspective using airborne lidar. Geomorphology, 125, 27-39.
    • Isachsen, G. 1912. Exploration du Nord-Ouest du Spitsberg entreprise sous les auspices de S.A.S. le Prince de Monaco par la Mission Isachsen. Fascicule XL. Imprimerie de Monaco.
    • Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W. and Schlüchter, C. 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28, 2137-2149.
    • Ivy-Ochs, S. and Kober, F. 2008. Surface exposure dating with cosmogenic nuclides. Quaternary Science Journal, 57 (1-2), 157-189.
    • James, M.R and Robson, S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117: F03017.
    • Javernick, L., Brasington, J. and Caruso, B. 2014. Modelling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology, In press. Corrected Proof.
    • Jennings, S.J.A., Hambrey, M.J. and Glasser, N.F. 2014. Ice flow-unit influence on glacier structure, debris entrainment and transport. Earth Surface Processes and Landforms, 39 (10), 1279-1292.
    • Jiskoot, H., Murray, T. and Boyle, P.J. 2000. Controls on the distribution of surge-type glaciers in Svalbard. Journal of Glaciology, 46 (154) 412-422.
    • Joerin, U.E., Stocker, T.F. and Schluchter, C. Multicentury glacier fluctuations in the Swiss Alps during the Holocene, The Holocene, 16 (5), 697-704.
    • Johnson, P.G. 1971. Ice Cored Moraine Formation and Degradation, Donjek Glacier, Yukon Territory, Canada. Geografiska Annaler. Series A, Physical Geography, 53 (3-4), 198- 202.
    • Jones, A.F., Brewer, P.A., Johnstone, E. and Macklin, M.G. 2007. High-resolution interpretative geomorphological mapping of river valley environments using airborne LiDAR data. Earth Surface Processes and Landforms, 32 (10): 1574-1592.
    • Karlén, W. 1973. Holocene glacier and climatic variations, Kebnekaise mountains, Swedish Lapland. Geografiska Annaler, 55A, 29-63.
    • Karlén, W. 1988. Scandinavian glacial and climatic fluctuations during the Holocene, Quaternary Science Reviews, 7 (2), 199-209.
    • Karlén, W. and Kuylenstierna, J. 1996. On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene, 6, 359-365.
    • Kaser, G., Cogley, J.G., Dyurgerov, M.B., Meier, M.F. and Ohmura. 2006. Mass balance of glaciers and ice caps: Consensus estimates for 1961-2004. Geophysical Research Letters, 33 (19), L19501.
    • Kerschner, H. and Ivy-Ochs, S. 2008. Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change, 60 (1-2), 58-71.
    • Kerschner, H., Ivy-Ochs, S. and Schlüchter, C. 1999. Palaeoclimatic interpretation of the early late-glacial glacier in the Gschnitz valley, Central Alps, Austria. Annals of Glaciology, 28, 135-140.
    • Kerschner, H., Kaser, G. and Sailer, R. 2000. Alpine Younger Dryas glaciers as palaeoprecipitation gauges. Annals of Glaciology, 31, 80-84.
    • King, E.C., Smith, A.M., Murray, T. and Stuart, G.W. 2008. Glacier-bed characteristics of midtre Lovénbreen, Svalbard, from high‐resolution seismic and radar surveying, Journal of Glaciology, 54, 145-156.
    • Kirkbride, M.P. and Winkler, S. 2012. Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution. Quaternary Science Reviews, 46: 1-29.
    • Kjaer, K.H. and Krüger, J. 2001. The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology, 48 (5), 935- 952.
    • Knight, J., Mitchell, W.A. and Rose, J. 2011. Geomorphological field mapping. In: Smith, M.J., Paron, P. and Griffiths, J. (eds) Geomorphological Mapping: a handbook of techniques and applications. Elsevier, London, pp 151-187.
    • Kohler, J., James, T.D., Murray, T., Nuth, C., Brandt, O. Barrand, N.E., Aas, H.F. and Luckman, A. 2007. Acceleration in thinning rate on western Svalbard glaciers. Geophysical Research Letters, 34 (18), L18502.
    • Krüger J. 1994. Glacial processes, sediments, landforms and stratigraphy in the terminus region of Myrdalsjokull, Iceland. Folia Geographica Danica, 21, 1-223.
    • Krüger J. 1995. Origin, chronology and climatological significance of annual-moraine ridges at Myrdalsjökull, Iceland. The Holocene, 5, 420-427.
    • Krüger, J. 1985. Formation of a Push Moraine at the Margin of Höfdabrekkujökull, South Iceland. Geografiska Annaler. 67A (3-4). 199-212.
    • Krüger, J. and Kjaer, K.H. 2000. De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland. The Holocene, 10 (6), 737-747.
    • Krüger, J., Kurt, K.H. and Meer, J.J.M., 2002. From push moraine to single-crested dump moraine during a sustained glacier advance. Norsk Geografisk Tidsskrift, 56, 87-95.
    • Krüger, J., Schomacker A., and Benediktsson, Í.Ö. 2010. Ice-marginal environments: geomorphic and structural genesis of marginal moraines at Mýrdalsjökull. In: A.Schomacker, J. Krüger and K. H. Kjaer eds. The Mýrdalsjökull Ice Cap, Iceland. Glacial processes, sediments and landforms on an active volcano. Developments in Quaternary Science, 13, 79-104.
    • Krzyszkowski, D. and Zieliński, T. 2002 The Pleistocene end moraine fans: controls on their sedimentation and location. Sedimentary Geology, 149 (1-3), 73-92.
    • Laliberte, A.S. and Rango, A. 2009. Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Transactions on Geoscience and Remote Sensing, 47 (3), 761-770.
    • Lamplugh, G.W. 1911. On the shelly moraine of the Sefstromglacier and other Spitsbergen phenomena illustrative of British glacial conditions. Proceedings of the Yorkshire Geological Society, 17: 216-341.
    • Lane, S.N. 2000. The measurement of river channel morphology using digital photogrammetry. Photogrammetric Record, 16 (96), 937-961.
    • Le Roy, M., Nicolussi, K., Deline, P., Astrade, L. Edouard. J-L., Miramont, C. and Arnaud, F. 2015. Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Science Reviews, 108, 1-22.
    • Lee, J.R., Phillips, E., Booth, S.J., Rose, J., Jordan, H.M., Pawley, S.M., Warren, M., Lawley, R.S. 2013. A polyphase glacitectonic model for ice-marginal retreat and terminal moraine development: the Middle Pleistocene British Ice Sheet, northern Norfolk, UK. Proceedings of the Geologists' Association, 124, 753-777.
    • Lindhorst, S. and Schutter, I. 2014. Polar gravel beach-ridge systems: Sedimentary architecture, genesis, and implications for climate reconstructions (South Shetland Islands/Western Antarctic Peninsula). Geomorphology, 221, 187-203.
    • Lucieer, A., de Jong, S.M., and Turner, D. 2013. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 38 (1), 97-116.
    • Lucieer, A., Turner, D., King, D.H. and Robinson, S.A. 2014. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. International Journal of Applied Earth Observation and Geoinformation, 27A, 53-62.
    • Lui, X. 2008. Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography. 32 (1), 31-49.
    • Lukas, S. 2005. A test of the englacial thrusting hypothesis of 'hummocky' moraine formation: case studies from the northwest Highlands, Scotland. Boreas, 34 (3), 287-307.
    • Lukas, S., Benn, D.I., Boston, C.M., Brook. M., Coray, S., Evans, D.J.A., Grafe, A., KellererPirklbauer, A., Kirkbride, M.P., Krabbendam, M., Lovell, H., Machiedo, M., Mills, S.C., Nye., K., Reinardy, B.T.I., Ross, F.H. and Signere, M. 2013. Clast shape analysis and clast transport paths in glacial environments: A critical review of methods and the role of lithology. Earth-Science Reviews, 121, 96-116.
    • Lukas, S., Graf, A., Coray, S. and Schlüchter, C. 2012. Genesis, stability and preservation potential of large lateral moraines of Alpine valley glaciers - towards a unifying theory based on Findelengletscher, Switzerland. Quaternary Science Reviews, 38, 27-48.
    • Lukas, S., Nicholson, L.I. and Humlum, O. 2007. Comment on Lønne and Lyså (2005): Deglaciation dynamics following the Little Ice Age on Svalbard: Implications for shaping of landscapes at high latitudes, Geomorphology, 72, 300-319.
    • Lukas, S., Nicholson, L.I., Ross, F.H and Humlum, O. 2005. Formation, meltout processes and landscape alteration of High-Arctic ice-cored moraines-examples from Nordenskiold Land, Central Spitsbergen. Polar Geography, 29 (3), 157-187.
    • Lukas, S., Sass, O., 2011. The formation of Alpine lateral moraines inferred from sedimentology and radar reflection patterns: a case study from Gornergletscher, Switzerland. Geological Society, London, Special Publications, 354, 77-92.
    • Lütschg, D and Kasser, P. 1973. Map of the Mattmark Glaciers. In: PSFG. 1973. Fluctuations of Glaciers 1965-1970 (Vol. II). P. Kasser (ed.), IAHS (ICSI) / UNESCO, Permanent Service on Fluctuations on Glaciers, Zurich, Switzerland: 357 pp.
    • Lyså, A. and Lønne. I. 2001. Moraine development at a small High-Arctic valley glacier: Rieperbreen, Svalbard. Journal of Quaternary Science, 16 (6), 519-529.
    • Mancini. F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S. and Gabbianelli, G. 2013. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing, 5, 6880-6898.
    • Masiokas, M.H., Villalba, R., Luckman, B.H., Lascano, M.E., Delgado, S. and Stepanek, P. 2008. 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change, 60 (1-2): 85-100.
    • Matthews, J.A. and Petch, J.R. 1982. Within-valley asymmetry and related problems of Neoglacial lateral moraine development at certain Jotunheimen glaciers, southern Norway. Boreas, 11 (3), 225-247.
    • Matthews, J.A. and Shakesby, R.A. 1984. The status of the 'Little Ice Age' in southern Norway: relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas, 13 (3), 333-346.
    • Matthews, J.A. Winkler, S. and Wilson, P. 2014. Age and origin of ice-cored moraines in Jotunheimen and Breheimen, southern Norway: insights from Schmidt-hammer exposure-age dating. Geografiska Annaler: Series A, Physical Geography, 96 (4), 531-548.
    • Matthews, J.A., McCarrol, D. and Shakesby, R.A. 1995. Contemporary terminal-moraine ridge formation at a temperate glacier: Styggedalsbreen, Jotunheimen, southern Norway. Boreas, 24 (2), 129-139.
    • Mattson, L.E. and Gardner, J.S. 1991. Mass Wasting on Valley-Side Ice-Cored Moraines, Boundary Glacier, Alberta, Canada. Geografiska Annaler. Series A, 73 (3/4), 123-128.
    • McKillop, R.J. and Clague, J.J. 2007. Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia. Global and Planetary Change, 56, 153-171.
    • Millar, S.W.S. and Nelson, F.E. 2003. Influence of Clast Axial Ratio on Macrofabric Strength in Periglacial Colluvium. Journal of Sedimentary Research, 73 (5): 720-724.
    • Mitasova, H., Overton, M.F., Recalde, J.J., Bernstein, D.J and Freeman, C.W. 2009. RasterBased Analysis of Coastal Terrain Dynamics from Multitemporal Lidar Data. Journal of Coastal Research, 25 (2), 507-514.
    • Moncrieff, A.C.M. 1989. Classification of poorly-sorted sedimentary rocks. Sedimentary Geology, 65, (1-2), 191-194.
    • Monnier, S. and Kinnard, C. 2013. Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and groundpenetrating radar. Annals of Glaciology, 54 (64), 61-72.
    • Murray, T., Booth, A.D. 2009. Imaging glacial sediment inclusions in 3-D using groundpenetrating radar at Kongsvegen, Svalbard. Journal of Quaternary Science, 25, 754-761.
    • Murray, T., Strozzi, T., Luckman, A., Jiskoot, H. and Christakos, P. 2000. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. Journal of Geophysical Research: Solid Earth, 108, 2237, B5.
    • Murton J.B., Whiteman, C.A., Waller, R.I., Pollard, W.H., Clark, I.D. and Dallimore, S.R. 2005. Basal ice facies and supraglacial melt-out till of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, western Arctic Canada. Quaternary Science Reviews, 24 (5-6), 681-708.
    • Napieralski, J., Harbor, J. and Li, Y. 2007. Glacial geomorphology and geographic information systems. Earth-Science Reviews, 85 (1-2): 1-22.
    • Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, 66, 261-330.
    • Oguchi, T., Hayakawa, Y.S. and Wasklewicz, T. 2011. Data Sources. In: Smith, M.J., Paron, P. and Griffiths, J. (eds) Geomorphological Mapping: a handbook of techniques and applications. Elsevier, London, pp 151-187.
    • Osborn, G., McCarthy, D., LaBrie, A. and Burke, R. 2015. Lichenometric dating: Science or pseudo-science? Quaternary Research, 83 (1), 1-12.
    • Osborn, G.D. 1978. Fabric and origin of lateral moraines, Bethartoli Glacier, Garhwal Himalaya, India. Journal of Glaciology, 20, 547-553.
    • Osborn, G.D. 1986. Lateral-moraine stratigraphy and neoglacial history of Bugaboo Glacier, British Columbia. Quaternary Research, 26 (2), 171-178.
    • Østrem, G. 1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler, 41A: 228-230.
    • Østrem, G. 1963. Comparative crystallographic studies on ice from ice-cored moraine, snow banks and glaciers. Geografiska Annaler, 45, 210-40 Østrem, G. 1964. Ice-cored moraines in Scandinavia. Geografiska Annaler, 46: 282-337.
    • Østrem, G. 1965. Problems of Dating Ice-Cored Moraines. Geografiska Annaler, 47A (1), 1- 38.
    • Østrem, G. 1971. Rock Glaciers and Ice-Cored Moraines, a Reply to D. Barsch. Geografiska Annaler, 53A (3-4), 207-213.
    • Østrem, G. and Arnold, K. 1970. Ice-Cored Moraines in Southern British Columbia and Alberta, Canada. Geografiska Annaler, Series A. 52 (2), 120-128.
    • Ouédraogo, M.M., Degré, A., Debouche, C. and Lisein, J. 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology, 214, 339-355.
    • Overgaard, T and Jakobsen, P.R. 2001. Mapping of glaciotectonic deformation in an ice marginal environment with ground penetrating radar. Journal of Applied Geophysics, 47 (3-4), 191-197.
    • Parriaux, A. and Nicoud. G.F. 1990. Hydrological behaviour of glacial deposits in mountainous areas, in: L. Molnár (Ed.), Hydrology of Mountainous Areas. International Association of Hydrological Sciences, Publication 190, pp 291-311.
    • Paul, F., Kääb, A., Maisch, M., Kellenberger, T. and Haeberli, W. 2004. Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters, 31 (21), L21402.
    • Pellicer, X.M. and Gibson, P. 2011. Electrical resistivity and Ground Penetrating Radar for the characterisation of the internal architecture of Quaternary sediments in the Midlands of Ireland. Journal of Applied Geophysics, 75 (4), 638-647.
    • Powers, M.C. 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23 (2), 117-119.
    • Price, R.J. 1970. Moraines at Fjallsjökull, Iceland. Arctic and Alpine Research, 2 (1), 27-42.
    • Pyle, C.J., Richards, K.S. and Chandler, J.H. 1997. Digital photogrammetric monitoring of river bank erosion. The Photogrammetric Record, 15, 753-764.
    • Ramage, J.M., Smith, J.A., Rodbell, D.T. and Seltzer, G.O. 2005. Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Journal of Quaternary Science, 20 (7-8), 777-788.
    • Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C. and Browning, D. 2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring and management. Journal of Applied Remote Sensing, 3, 1-15.
    • Reinardy, B., Leighton I. and Marx, P. 2013. Glacial thermal regime linked to processes of annual moraine formation at Midtdalsbreen, southern Norway. Boreas 42 (4), 896-911.
    • Reyes, A.V., Wiles, G.C., Smith, D.J., Barclay, D.J., Allen, S., Jackson, S., Larocque, S., Laxton, S., Lewis, D., Calkin, P.E. and Clague, J.J. 2006. Expansion of alpine glaciers in Pacific North America in the first millennium A.D. Geology, 34 (1), 57-60.
    • Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. 2010. Effects of debris on ice surface melting rates: an experimental study. Journal of Glaciology, 56 (197), 384-394.
    • Schomacker, A. and Kjaer, K.H. 2007. Origin and de-icing of multiple generations of icecored moraines at Brúarjökull, Iceland. Boreas, 36 (4), 411-425.
    • Schomacker, A. and Kjaer, K.H. 2008. Quantification of dead-ice melting in ice-cored moraines at the high-Arctic glacier Holmströmbreen, Svalbard. Boreas, 37 (2): 211-225.
    • Schwamborn, G., Heinzel, J., Schirrmeister, L. 2007. Internal characteristics of icemarginal sediments deduced from georadar profiling and sediment properties (Brøgger Peninsula, Svalbard). Geomorphology, 95 (1-2), 74-83.
    • Schytt, V. 1959. The Glaciers of the Kebnekajse-Massif. Geografiska Annaler, 41 (4), 213-227.
    • Schytt, V. 1962. A tunnel along the bottom of Isfallsglaciären. Geografiska Annaler, 44 (3- 4), 411-412.
    • Schytt, V. 1966. Notes on Glaciological Activities in Kebnekaise, Sweden during 1965. Geografiska Annaler, 48 (1), 43-50.
    • Shakesby, R.A., Dawson, A.G. and Matthews, J.A. 1987. Rock glaciers, protalus ramparts and related phenomena, Rondane, Norway: a continuum of large-scale talus derived landforms. Boreas, 16, 306-317.
    • Shakesby, R.A., Matthews, J.A. and Winkler, S. 2004. Glacier variations in Breheimen, southern Norway: relative-age dating of Holocene moraine complexes at six highaltitude glaciers. The Holocene, 14 (6), 899-910.
    • Sletten, K., Lyså, A. and Lønne , I. 2001. Formation and disintegration of a high‐arctic ice‐cored moraine complex, Scott Turnerbreen, Svalbard. Boreas, 30, 272-284.
    • Small, R.J. 1983. Lateral moraines of Glacier De Tsidjiore Nouve: form, development and implications. Journal of Glaciology, 29 (102), 250-259.
    • Staines, K.E., Carrivick, J.L., Tweed, F.S., Evans, A.J., Russell, A.J., Jóhannesson, T. and Roberts, M. 2014. A multi-dimensional analysis of proglacial landscape change at Sólheimajökull, southern Iceland. Earth Surface Processes and Landforms. 40 (6), 809-822.
    • Stieglitz, M., Déry, S.J., Romanovsky, V.E., Osterkamp, T.E. 2003. The role of snow cover in the warming of arctic permafrost. Geophysical Reserch Letters, 30 (13), 1721.
    • Sugden, D.E., Marchant, D.R., Potter Jr. N., Souchez, R.A., Denton, G.H., Swischer III, C.C. and Tison, J.-L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412-414.
    • Swift, D.A., Evans, D.J.A. and Fallick, A.E. 2006. Transverse englacial debris-rich ice bands at Kvíárjökull, southeast Iceland. Quaternary Science Reviews, 25 (13-14), 1708- 1718.
    • Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A. and Luckman, B. 2012. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). Journal of Hydrology, 444-445, 134- 145.
    • Zemp, M., Jansson, P. Holmlund, P. Gärtner-Roer, I. Koblet, T., Thee, P. and Haeberli, W. 2010. Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99) - Part 2: Comparison of glaciological and volumetric mass balances. The Cryosphere, 4, 345-357.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | INTERACT

Cite this article