LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: The Royal Society
Languages: English
Types: Article
Subjects: QA, QC, Buckling; Edge wrinkles; Foundation; Incremental deformation; Pre-stressed plate; Mathematics (all); Engineering (all); Physics and Astronomy (all), Research Articles, TA

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff–Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.
  • No references.
  • No related research data.
  • No similar publications.