Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IEEE
Languages: English
Types: Article
Subjects: Q1, QC
A recombination active defect is found in as-grown high-purity floating zone n-type silicon wafers containing grown-in nitrogen. In order to identify the properties of the defect, injection dependent minority carrier lifetime measurements, secondary ion mass spectroscopy measurements, and photoluminescence lifetime imaging are performed. The lateral recombination center distribution varies greatly in a radially symmetric way, while the nitrogen concentration remains constant. The defect is shown to be deactivated through high temperature annealing and hydrogenation. We suggest that a nitrogen-intrinsic point defect complex may be responsible for the observed recombination.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, “Improved quantitative description of Auger recombination in crystalline silicon,” Phys. Rev. B, vol. 86, art. no. 165202, 2012.
    • [2] J. Schmidt and K. Bothe, “Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon,” Phys. Rev. B, vol. 69, art. no. 024107, 2004.
    • [3] K. Bothe and J. Schmidt, “Electronically activated boron-oxygen-related recombination centers in crystalline silicon,” J. Appl. Phys., vol. 99, art. no. 013701, 2006.
    • [4] Y. Hu, H. Schon, O. Nielsen, E. J. Ovrelid, and L. Arnberg, “Investigating minority carrier trapping in n-type Cz silicon by transient photoconductance measurements,” J. Appl. Phys., vol. 111, art. no. 053101, 2012.
    • [5] Y. Hu, H. Schon, E. J. Ovrelid, O. Nielsen, and L. Arnberg, “Investigating thermal donors in n-type Cz silicon with carrier density imaging,” AIP Adv., vol. 2, art. no. 032169, 2012.
    • [6] F. E. Rougieux, N. E. Grant, and D. Macdonald, “Thermal deactivation of lifetime-limiting grown-in point defects in n-type Czochralski silicon wafers,” Physica Status Solidi-Rapid Res. Lett., vol. 7, pp. 616-618, 2013.
    • [7] K. Bothe, R. J. Falster, and J. D. Murphy, “Room temperature subbandgap photoluminescence from silicon containing oxide precipitates,” Appl. Phys. Lett., vol. 101, art. no. 032107, 2012.
    • [8] J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, and R. J. Falster, “The effect of oxide precipitates on minority carrier lifetime in p-type silicon,” J. Appl. Phys., vol. 110, art. no. 053713, 2011.
    • [9] J. D. Murphy, K. Bothe, R. Krain, V. V. Voronkov, and R. J. Falster, “Parameterisation of injection-dependent lifetime measurements in semiconductors in terms of Shockley-Read-Hall statistics: An application to oxide precipitates in silicon,” J. Appl. Phys., vol. 111, art. no. 113709, 2012.
    • [10] J. Haunschild, I. E. Reis, J. Geilker, and S. Rein, “Detecting efficiencylimiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging,” Physica Status Solidi-Rapid Res. Lett., vol. 5, pp. 199-201, 2011.
    • [11] H. Angelskar, R. Sondena, M. S. Wiig, and E. S. Marstein, “Characterization of oxidation-induced stacking fault rings in Cz silicon: Photoluminescence imaging and visual inspection after wright etch,” Energy Procedia, vol. 27, pp. 160-166, 2012.
    • [12] Y. Yatsurugi, N. Akiyama, Y. Endo, and T. Nozaki, “Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon,” J. Electrochem. Soc., vol. 120, pp. 975-979, 1973.
    • [13] W. v. Ammon, P. Dreier, W. Hensel, U. Lambert, and L. Ko¨ster, “Influence of oxygen and nitrogen on point defect aggregation in silicon single crystals,” Mater. Sci. Eng. B, vol. 36, pp. 33-41, 1996.
    • [14] T. Abe and H. Takeno, “Dynamic behavior of intrinsic point defects in Fz and Cz silicon crystals,” MRS Online Proc. Library, vol. 262, art. no. 3, 1992.
    • [15] C. R. Alpass, J. D. Murphy, R. J. Falster, and P. R. Wilshaw, “Nitrogen diffusion and interaction with dislocations in single-crystal silicon,” J. Appl. Phys., vol. 105, art. no. 013519, 2009.
    • [16] W. von Ammon, R. Ho¨lzl, J. Virbulis, E. Dornberger, R. Schmolke, and D. Gra¨f, “The impact of nitrogen on the defect aggregation in silicon,” J. Cryst. Growth, vol. 226, pp. 19-30, 2001.
    • [17] K. Nauka, M. S. Goorsky, H. C. Gatos, and J. Lagowski, “Nitrogenrelated deep electron traps in float zone silicon,” Appl. Phys. Lett., vol. 47, pp. 1341-1343, 1985.
    • [18] Y. Tokumaru, H. Okushi, T. Masui, and T. Abe, “Deep levels associated with nitrogen in silicon,” Jpn. J. Appl. Phys., vol. 21, art. no. L443, 1982.
    • [19] T. Abe, H. Harada, N. Ozawa, and K. Adomi, “Deep level generationannihilation in nitrogen doped FZ crystals,” MRS Online Proc. Library, vol. 59, art. no. 537, 1985.
    • [20] K. Kakumoto and Y. Takano, “Deep level induced by diffused N2 and vacancy complex in Si,” in Proc. 2nd Int. Symp. Adv. Sci. Technol. Silicon Mater., 1996, art. no. 437.
    • [21] J. D. Murphy, C. R. Alpass, A. Giannattasio, S. Senkader, D. Emiroglu, J. H. Evans-Freeman, R. J. Falster, and P. R. Wilshaw, “Nitrogen-doped silicon: Mechanical, transport and electrical properties,” ECS Trans., vol. 3, pp. 239-253, Oct. 2006.
    • [22] W. V. Ammon and P. Dreier, “Silicon bulk technology for power devices,” in Proc. Int. Symp. Power Semicond. Devices, 1988, pp. 134-140.
    • [23] R. A. Sinton and A. Cuevas, “Contactless determination of currentvoltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,” Appl. Phys. Lett., vol. 69, pp. 2510-2512, 1996.
    • [24] T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett., vol. 89, art. no. 044107, 2006.
    • [25] R. Jones, S. O¨berg, F. Berg Rasmussen, and B. Bech Nielsen, “Identification of the dominant nitrogen defect in silicon,” Phys. Rev. Lett., vol. 72, pp. 1882-1885, 1994.
    • [26] J. P. Goss, I. Hahn, R. Jones, P. R. Briddon, and S. O¨berg, “Vibrational modes and electronic properties of nitrogen defects in silicon,” Phys. Rev. B, vol. 67, art. no. 045206, 2003.
    • [27] V. V. Voronkov and R. Falster, “Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon,” J. Cryst. Growth, vol. 204, pp. 462-474, 1999.
    • [28] V. V. Voronkov and R. Falster, “Intrinsic point defects and impurities in silicon crystal growth,” J. Electrochem. Soc., vol. 149, pp. G167-G174, 2002.
    • [29] A. Focsa, A. Slaoui, H. Charifi, J. P. Stoquert, and S. Roques, “Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H,” Mater. Sci. Eng. B, vol. 159-160, pp. 242-247, 2009.
    • [30] G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, “Influence of the deposition temperature on the c-si surface passivation by Al2O3 films synthesized by ALD and PECVD,” Electrochem. Solid-State Lett., vol. 13, pp. H76-H79, 2010.
    • [31] B. Sopori, M. I. Symko, R. Reedy, K. Jones, and R. Matson, “Mechanism(s) of hydrogen diffusion in silicon solar cells during forming gas anneal,” in Proc. IEEE 26th Photovoltaic Spec. Conf., 1997, pp. 25-30.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article