Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Du, Heshan; Alechina, Natasha; Jackson, Mike; Hart, Glen (2016)
Publisher: Wiley
Languages: English
Types: Article
A method for matching crowd-sourced and authoritative geospatial data is presented. A level of tolerance is defined as an input parameter as some difference in the geometry representation of a spatial object is to be expected. The method generates matches between spatial objects using location information and lexical information, such as names and types, and verifies consistency of matches using reasoning in qualitative spatial logic and description logic. We test the method by matching geospatial data from OpenStreetMap and the national mapping agencies of Great Britain and France. We also analyze how the level of tolerance affects the precision and recall of matching results for the same geographic area using 12 different levels of tolerance within a range of 1 to 80 meters. The generated matches show potential in helping enrich and update geospatial data.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • OSM geometry 953 Table 1: Data used for Nottingham case study
    • OSGB geometry OSM spatial object 7795 281
    • OSGB spatial object 13204
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok