LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects:
Wax deposition is one of the main flow assurance problems in the oil industry. It can result in the restriction of crude oil flow in the pipeline, creating pressure abnormalities and causing an artificial blockage leading to a reduction or interruption in the production. Wax can precipitate as a solid phase on the pipe wall when its temperature (inlet coolant temperature) drops below the Wax Appearance Temperature (WAT). An experimental flow loop system was built in the lab to study the variation of wax deposition thickness under the single phase transport. A series of experiments were carried out at different flow rates (2.7 and 4.8 L/min) to study wax deposition and measure the wax thickness using four different techniques including direct technique pigging, pressure drop, heat transfer and liquid displacement-level detection (LD-LD). The effect of factors on wax formation such as inlet coolant temperature, inhibitor and spiral flow has been examined. The results show the wax inhibition percentage (WI)% was 40% and 45% at flow rate 2.7 and 4.8 L/min respectively of the inhibitor W802 (polyacrylate polymer (C16-C22)) at inlet coolant temperature 14 ºC. The wax reduction percentage (WR) % was 65% and 73% at flow rate 2.7 and 4.8 L/min respectively of the spiral flow at inlet coolant temperature 14 ºC. This percentage of inhibition will increased rapidly by increasing the inlet coolant temperature.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article