LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Society for Biochemistry and Molecular Biology
Languages: English
Types: Article
Subjects: Cell Biology
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 µm; IIB, K(d) = 8 µm; IIC, K(d) = 1.0 µm). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Heizmann, C. W., Fritz, G., and Schafer, B. W. (2002) Front Biosci 7, d1356-1368 Donato, R. (2003) Microsc Res Tech 60, 540-551.
    • Salama, I., Malone, P. S., Mihaimeed, F., and Jones, J. L. (2008) Eur J Surg Oncol 34, 357- 364
    • Rudland, P. S., Platt-Higgins, A., Renshaw, C., West, C. R., Winstanley, J. H., Robertson, L., and Barraclough, R. (2000) Cancer Res 60, 1595-1603.
    • Helfman, D. M., Kim, E. J., Lukanidin, E., and Grigorian, M. (2005) Br J Cancer 92, 1955- 1958
    • Perez, D., Demartines, N., Meier, K., Clavien, P. A., Jungbluth, A., and Jaeger, D. (2007) J Invest Surg 20, 181-186
    • Wang, G., Platt-Higgins, A., Carroll, J., de Silva Rudland, S., Winstanley, J., Barraclough, R., and Rudland, P. S. (2006) Cancer Res 66, 1199-1207 Arumugam, T., Simeone, D. M., Van Golen, K., and Logsdon, C. D. (2005) Clin Cancer Res 11, 5356-5364
    • Bronckart, Y., Decaestecker, C., Nagy, N., Harper, L., Schafer, B. W., Salmon, I., Pochet, R., Kiss, R., and Heizman, C. W. (2001) Histol Histopathol 16, 707-712.
    • Davies, B. R., Davies, M. P., Gibbs, F. E., Barraclough, R., and Rudland, P. S. (1993) Oncogene 8, 999-1008
    • Ford, H. L., Silver, D. L., Kachar, B., Sellers, J. R., and Zain, S. B. (1997) Biochemistry 36, 16321-16327.
    • Kriajevska, M. V., Cardenas, M. N., Grigorian, M. S., Ambartsumian, N. S., Georgiev, G. P., and Lukanidin, E. M. (1994) J Biol Chem 269, 19679-19682 Whiteman, H. J., Weeks, M. E., Dowen, S. E., Barry, S., Timms, J. F., Lemoine, N. R., and Crnogorac-Jurcevic, T. (2007) Cancer Res 67, 8633-8642 Conti, M. A., Even-Ram, S., Liu, C., Yamada, K. M., and Adelstein, R. S. (2004) J Biol Chem 279, 41263-41266
    • Lo, C. M., Buxton, D. B., Chua, G. C., Dembo, M., Adelstein, R. S., and Wang, Y. L. (2004) Mol Biol Cell 15, 982-989
    • Tullio, A. N., Accili, D., Ferrans, V. J., Yu, Z. X., Takeda, K., Grinberg, A., Westphal, H., Preston, Y. A., and Adelstein, R. S. (1997) Proc Natl Acad Sci U S A 94, 12407-12412. Uren, D., Hwang, H. K., Hara, Y., Takeda, K., Kawamoto, S., Tullio, A. N., Yu, Z. X., Ferrans, V. J., Tresser, N., Grinberg, A., Preston, Y. A., and Adelstein, R. S. (2000) J Clin Invest 105, 663-671.
    • Golomb, E., Ma, X., Jana, S. S., Preston, Y. A., Kawamoto, S., Shoham, N. G., Goldin, E., Conti, M. A., Sellers, J. R., and Adelstein, R. S. (2004) J Biol Chem 279, 2800-2808 Wylie, S. R., and Chantler, P. D. (2008) Mol Biol Cell 19, 3956-3968 Kriajevska, M., Tarabykina, S., Bronstein, I., Maitland, N., Lomonosov, M., Hansen, K., Georgiev, G., and Lukanidin, E. (1998) J Biol Chem 273, 9852-9856 Li, Z. H., and Bresnick, A. R. (2006) Cancer Res 66, 5173-5180 Li, Z. H., Spektor, A., Varlamova, O., and Bresnick, A. R. (2003) Biochemistry 42, 14258- 14266
    • Even-Ram, S., Doyle, A. D., Conti, M. A., Matsumoto, K., Adelstein, R. S., and Yamada, K. M. (2007) Nat Cell Biol 9, 299-309
    • Wang, G., Rudland, P. S., White, M. R., and Barraclough, R. (2000) J Biol Chem 275, 11141- 11146
    • Lamartina, S., Silvi, L., Roscilli, G., Casimiro, D., Simon, A. J., Davies, M. E., Shiver, J. W., Rinaudo, C. D., Zampaglione, I., Fattori, E., Colloca, S., Gonzalez Paz, O., Laufer, R., Bujard, H., Cortese, R., Ciliberto, G., and Toniatti, C. (2003) Mol Ther 7, 271-280 Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., and McEwan, R. N. (1987) Cancer Res 47, 3239-3245 Li, Z. H., Dulyaninova, N. G., House, R. P., Almo, S. C., and Bresnick, A. R. (2010) Mol Biol Cell 21, 2598-2610
    • Ismail, T. M., Fernig, D. G., Rudland, P. S., Terry, C. J., Wang, G., and Barraclough, R. (2008) Carcinogenesis 29, 2259-2266
    • Ismail, T. M., Zhang, S., Fernig, D. G., Gross, S., Martin-Fernandez, M. L., See, V., Tozawa, K., Tynan, C. J., Wang, G., Wilkinson, M. C., Rudland, P. S., and Barraclough, R. (2010) J Biol Chem 285, 914-922
    • Zhang, S., Wang, G., Liu, D., Bao, Z., Fernig, D. G., Rudland, P. S., and Barraclough, R. (2005) Oncogene 24, 4401-4411
    • Ismail, T. M., Gross, S., Goh, C., Wilkinson, M. C., Rudland, P. S., and Barraclough, R. (2011) The C-terminal amino acids of S100A4 and S100P play a role in cell migration and metastasis. in Montreal International Symposium on Angiogenesis and Metastasis, Montreal, Canada, p101.
    • Liu, Z., van Grunsven, L. A., Van Rossen, E., Schroyen, B., Timmermans, J. P., Geerts, A., and Reynaert, H. (2010) Br J Pharmacol 159, 304-315 Dulyaninova, N. G., House, R. P., Betapudi, V., and Bresnick, A. R. (2007) Mol Biol Cell 18, 3144-3155
    • Breckenridge, M. T., Dulyaninova, N. G., and Egelhoff, T. T. (2009) Mol Biol Cell 20, 338- 347
    • Burridge, K., and Wennerberg, K. (2004) Cell 116, 167-179 Dummler, B., Ohshiro, K., Kumar, R., and Field, J. (2009) Cancer Metastasis Rev 28, 51-63 Watanabe, T., Noritake, J., and Kaibuchi, K. (2005) Novartis Found Symp 269, 92-101; discussion 101-105, 223-130
    • Noritake, J., Watanabe, T., Sato, K., Wang, S., and Kaibuchi, K. (2005) J Cell Sci 118, 2085- 2092
    • Manser, E., Huang, H. Y., Loo, T. H., Chen, X. Q., Dong, J. M., Leung, T., and Lim, L. (1997) Mol Cell Biol 17, 1129-1143
    • Darenfed, H., Dayanandan, B., Zhang, T., Hsieh, S. H., Fournier, A. E., and Mandato, C. A. (2007) Cell Motil Cytoskeleton 64, 97-109
    • Sandquist, J. C., Swenson, K. I., Demali, K. A., Burridge, K., and Means, A. R. (2006) J Biol Chem 281, 35873-35883
    • Anderson, S., DiCesare, L., Tan, I., Leung, T., and SundarRaj, N. (2004) Exp Cell Res 298, 574-583
    • Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D., and Waterman, C. M. (2010) J Cell Biol 188, 877-890
    • Kuo, J. C., Han, X., Hsiao, C. T., Yates Iii, J. R., and Waterman, C. M. (2011) Nat Cell Biol 13, 383-393
    • Berrier, A. L., and Yamada, K. M. (2007) J Cell Physiol 213, 565-573 Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., and Yamamoto, T. (1995) Nature 377, 539-544 Ren, X. D., Kiosses, W. B., Sieg, D. J., Otey, C. A., Schlaepfer, D. D., and Schwartz, M. A. (2000) J Cell Sci 113 ( Pt 20), 3673-3678
    • Ford, H. L., and Zain, S. B. (1995) Oncogene 10, 1597-1605 Kriajevska, M., Bronstein, I. B., Scott, D. J., Tarabykina, S., Fischer-Larsen, M., Issinger, O., and Lukanidin, E. (2000) Biochim Biophys Acta 1498, 252-263
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article