Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Collis, M.W.; Lele, A.K.; Mackley, M.R.; Graham, R.S.; Groves, D.J.; Likhtman, A.E.; Nicholson, T.M.; Harlen, O.G.; McLeish, T.C.B.; Hutchings, L.R.; Fernyhough, C.M.; Young, R.N. (2005)
Publisher: American Institute of Physics
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Condensed Matter::Soft Condensed Matter, Physics::Fluid Dynamics
We explore both the rheology and complex flow behavior of monodisperse polymer melts. Adequate quantities of monodisperse polymer were synthesized in order that both the materials rheology and microprocessing behavior could be established. In parallel, we employ a molecular theory for the polymer rheology that is suitable for comparison with experimental rheometric data and numerical simulation for microprocessing flows. The model is capable of matching both shearand extensional data with minimal parameter fitting. Experimental data for the processing behavior of monodisperse polymers are presented for the first time as flow birefringence and pressure difference data obtained using a Multipass Rheometer with an 11:1 constriction entry and exit flow. Matching of experimental processing data was obtained using the constitutive equation with the Lagrangian numerical solver, FLOWSOLVE. The results show the direct coupling between molecular constitutive response and macroscopic processing behavior, and differentiate flow effects that arise separately from orientation and stretch.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baaijens F. P. T., S. H. A. Seelen, H. P. W. Baaijens, G. W. M. Peters, and H. E. H. Meijer, “Viscoelastic flow past a confined cylinder of a low density polyethylene melt,” J. Non-Newtonian Fluid Mech. 68, 173-203 s1997d.
    • Bent J., L. R. Hutchings, R. W. Richards, T. Gough, R. Spares, P. D. Coates, I. Grillo, O. G. Harlen, D. J. Read, R. S. Graham, A. E. Likhtman, D. J. Groves, T. M. Nicholson, and T. C. B. McLeish, “Neutron-mapping polymer flow: Scattering, flow visualization, and molecular theory,” Science 301, 1691-1695 s2003d.
    • Bishko G. B., O. G. Harlen, T. M. Nicholson, and T. C. B. McLeish, “Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the 'pom-pom' Model,” J. Non-Newtonian Fluid Mech. 82, 255-273 s1999d.
    • Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics sOxford University Press, Oxford, UK, 1986d.
    • Graham, R. S., A. E. Likhtman, S. T. Milner, and T. C. B. McLeish, “Microscopic theory of linear entangled polymer chains under rapid deformation including chain stretch and convective constraint release,” J. Rheol. 47, 1171-1200 s2003d.
    • Ianniruberto, G., and G. Marrucci, “A simple constitutive equation for entangled polymers with chain stretch,” J. Rheol. 45, 1305-1318 s2001d.
    • Janeschitz-Kriegl, H., Polymer Melt Rheology and Flow Birefringence sSpringer, New York, 1983d.
    • Larson, R. G., T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, and T. C. B. McLeish, “Definitions of entanglement spacing and time constants in the tube model,” J. Rheol. 47, 809-818 s2003d.
    • Laso, M., and H. C. Öttinger, “Calculation of viscoelastic flow using molecular models: The CONFFESSIT approach,” J. Non-Newtonian Fluid Mech. 47, 1-20 s1993d.
    • Lee, C. S., B. C. Tripp, and J. J. Magda, “Does N1 or N2 control the onset of edge fracture?” J. Rheol. 31, 306-308 s1992d.
    • Lee, K., and M. R. Mackley, “The application of the multipass rheometer for precise rheooptic characterisation of polyethylene melts,” Chem. Eng. Sci. 56, 5653-5661 s2001d.
    • Lee, K., M. R. Mackley, T. C. B. McLeish, T. M. Nicholson, and O. G. Harlen, “Experimental observation and numerical simulation of transient stress fangs within flowin molten polyethylene,” J. Rheol. 45, 1261-1277 s2001d.
    • Likhtman, A. E., and T. C. B. McLeish, “Quantitative theory for linear dynamics of linear entangled polymers,” Macromolecules 35, 6332-6343 s2002d.
    • Likhtman, A. E., and R. S. Graham, “Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation,” J. Non-Newtonian Fluid Mech. 114, 1-12 s2003d.
    • Mackley, M. R., Marshall, R. T. J., and Smeulders, J. B. A. F., “The multipass rheometer,” J. Rheol. 39, 1293-1309 s1995d.
    • McLeish, T. C. B., “Tube theory of entangled polymer dynamics,” Adv. Phys. 51, 1379-1527 s2002d.
    • McLeish, T. C. B., and S. T. Milner, “Entangled dynamics and melt flow of branched polymers,” Adv. Polym. Sci. 143, 195-256 s1999d.
    • Mead, D. W., R. G. Larson, and M. Doi, “A molecular theory of fast flows of linear polymers,” Macromolecules 31, 7895-7914 s1998d.
    • Meissner J., and J Hostettler, “A new elongational rheometer for polymer melts and other highly viscoelastic liquids,” Rheol. Acta 33, 1-21 s1994d.
    • Milner, S. T., T. C. B. McLeish, and A. E. Likhtman, “Microscopic theory of convective constraint release,” J. Rheol. 45, 539-563 s2001d.
    • Morton, M., and Fetters, L. J., “Anionic polymerization of vinyl monomers,” Rubber Chem. Technol. 48, 359-409 s1975d.
    • Pangborn, A. B., M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers, “Safe and convenient procedure for solvent purification,” Organometallics 15, 1518-1520 s1996d.
    • Peters, E. A. J. F., A. P. G. van Heel, M. A. Hulsen, and B. H. A. A. van den Brule, “Generalization of the deformation field method to simulate advanced reptation models in complex flow,” J. Rheol. 44, 811-829 s2000d.
    • Rajagopalan, D., R. C. Armstrong, and R. A. Brown, “Comparison of computational efficiency of flow simulations with multimode constitutive equations: Integral and differential models,” J. Non-Newtonian Fluid Mech. 46, 243-273 s1993d.
    • Schulze, J. S., T. P. Lodge, C. W. Macosko, J. Hepperle, H. Munstedt, H. Bastian, D. Ferri, D. J. Groves, Y. H. Kim, M. Lyon, T. Schweizer, T. Virkler, E. Wassner, and W. Zoetelief, “A comparison of extensional viscosity measurements from various RME rheometers,” Rheol. Acta 40, 457-466 s2001d.
    • Tanner R. I., and M. Keentok, “Shear fracture in cone-plate rheometry,” J. Rheol. 27, 47-57 s1983d.
    • Verbeeten, W., G. W. M. Peters, and F. P. T. Baaijens, “The extended pom-pom model,” J. Rheol. 45, 823-843 s2001d.
    • Wischnewski A., M. Monkenbusch, L. Willner, D. Richter, A. E. Likhtman, T. C. B. McLeish, and B. Farago, “Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts,” Phys. Rev. Lett. 88, 058301 s2002d.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article