LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Subjects: 3109, 2613, 3104

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Elastic fingering supplements the already interesting features of the traditional viscous fingering phenomena in Hele-Shaw cells with the consideration that the two-fluid separating boundary behaves like an elastic membrane. Sophisticated numerical simulations have shown that under maximum viscosity contrast the resulting patterned shapes can exhibit either finger tip-splitting or side-branching events. In this work, we employ a perturbative mode-coupling scheme to get important insights into the onset of these pattern formation processes. This is done at lowest nonlinear order and by considering the interplay of just three specific Fourier modes: a fundamental mode n and its harmonics 2n and 3n. Our approach further allows the construction of a morphology diagram for the system in a wide range of the parameter space without requiring expensive numerical simulations. The emerging interfacial patterns are conveniently described in terms of only two dimensionless controlling quantities: the rigidity fraction C and a parameter Γ that measures the relative strength between elastic and viscous effects. Visualization of the rigidity field for the various pattern-forming structures supports the idea of an elastic weakening mechanism that facilitates finger growth in regions of reduced interfacial bending rigidity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. G. Saffman and G. I. Taylor, Proc. R. Soc. London Ser. A 245, 312 (1958).
    • [2] For review papers, see G. M. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987); K. V. McCloud and J. V. Maher, Phys. Rep. 260, 139 (1995); J. Casademunt, Chaos 14, 809 (2004).
    • [3] L. Paterson, J. Fluid Mech. 113, 513 (1981).
    • [4] H. Thom´e, M. Rabaud, V. Hakim, and Y. Couder, Phys. Fluids A 1, 224 (1989).
    • [5] J.-D. Chen, J. Fluid Mech. 201, 223 (1989); J. -D. Chen, Exp. Fluids 5, 363 (1987).
    • [6] S. S. S. Cardoso and A. W. Woods, J. Fluid Mech. 289, 351 (1995).
    • [7] O. Praud and H. L. Swinney, Phys. Rev. E 72, 011406 (2005).
    • [8] J. A. Miranda and M. Widom, Physica D 120, 315 (1998).
    • [9] S. W. Li, J. S. Lowengrub, and P. H. Leo, J. Comput. Phys. 225, 554 (2007).
    • [10] Y. Nagatsu, Curr. Phys. Chem. 5, 52 (2015).
    • [11] F. Haudin and A. De Wit, Phys. Fluids 27, 113101 (2015).
    • [12] F. Haudin, J. H. E. Cartwright, and A. De Wit, Proc. Nat. Acad. Sc. U.S. A. 111, 17363 (2014).
    • [13] Y. Nagatsu, Y. Ishii, Y. Tada, and A. De Wit, Phys. Rev. Lett. 113, 024502 (2014).
    • [14] A. De Wit, K. Eckert, and S. Kalliadasis, Chaos 22, 037101 (2012).
    • [15] C. Almarcha, P.M.J. Trevelyan, P. Grosfils, and A. De Wit, Phys. Rev. Lett. 104, 044501 (2010).
    • [16] M. Mishra, P.M.J. Trevelyan, C. Almarcha, and A. De Wit, Phys. Rev. Lett. 105, 204501 (2010).
    • [17] L. A. Riolfo, Y. Nagatsu, S. Iwata, R. Maes, P.M.J. Trevelyan, and A. De Wit, Phys. Rev. E 85, 015304(R) (2012).
    • [18] L. A. Riolfo, J. Carballido-Landeira, C. O. Bounds, J. A. Pojman, S. Kalliadasis, and A. De Wit, Chem. Phys. Lett. 534, 13 (2012).
    • [19] T. Podgorski, M. C. Sostarecz, S. Zorman, and A. Belmonte, Phys. Rev. E 76, 016202 (2007).
    • [20] A. He, J. S. Lowengrub, and A. Belmonte, SIAM J. Appl. Math. 72, 842 (2012).
    • [21] G. D. Carvalho, J. A. Miranda, and H. Gadˆelha, Phys. Rev. E 88, 053006 (2013).
    • [22] G. D. Carvalho, H. Gadˆelha, and J. A. Miranda, Phys. Rev. E 89, 053019 (2014).
    • [23] G. D. Carvalho, H. Gadˆelha, and J. A. Miranda, Phys. Rev. E 90, 063009 (2014).
    • [24] M. Zhao, A. Belmonte, S. Li, and J. S. Lowengrub, J. Comp. Appl. Math. (to appear), http://dx.doi.org/10.1016/j.cam.2015.11.016.
    • [25] A. Buka, P. Palffy-Muhoray, and Z. Racz, Phys. Rev. A 36, 3984 (1987).
    • [26] H. Zhao and J. V. Maher, Phys. Rev. E 47, 4278 (1993).
    • [27] L. Kondic, P. Palffy-Muhoray, and M. J. Shelley, Phys. Rev. E 54, R4536 (1996).
    • [28] L. Kondic, M. J. Shelley, and P. Palffy-Muhoray, Phys. Rev. Lett. 80, 1433 (1998).
    • [29] P. Fast, L. Kondic, M. J. Shelley, and P. Palffy-Muhoray, Phys. Fluids 13, 1191 (2001).
    • [30] M. Constantin, M. Widom, and J. A. Miranda, Phys. Rev. E 67, 026313 (2003).
    • [31] P. Fast and M. J. Shelley, J. Comput. Phys. 195, 117 (2004).
    • [32] J. V. Fontana, S. A. Lira, and J. A. Miranda, Phys. Rev. E 87, 013016 (2013).
    • [33] E. O. Dias and J. A. Miranda, Phys. Rev. E 81, 016312 (2010).
    • [34] M. J. P. Gringras and Z. R´acz, Phys. Rev. A 40, 5960 (1989).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article