Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Millar, R.W.; Gallacher, K.; Frigerio, J.; Ballabio, A.; Bashir, A.; MacLaren, I.; Isella, G.; Paul, D.J. (2016)
Publisher: Optical Society of America
Languages: English
Types: Article
Ge on Si micro-disk, ring and racetrack cavities are fabricated and strained using silicon nitride stressor layers. Photoluminescence measurements demonstrate emission at wavelengths ≥ 2.3 μm, and the highest strained samples demonstrate in-plane, tensile strains of > 2%, as measured by Raman spectroscopy. Strain analysis of the micro-disk structures demonstrate that shear strains are present in circular cavities, which can detrimentally effect the carrier concentration for direct band transitions. The advantages and disadvantages of each type of proposed cavity structure are discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 12. G. Capellini, C. Reich, S. Guha, Y. Yamamoto, M. Lisker, M. Virgilio, A. Ghrib, M. E. Kurdi, P. Boucaud, B. Tillack, and T. Schroeder, “Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process,” Opt. Express 22, 399-410 (2014).
    • 13. R. W. Millar, K. Gallacher, A. Samarelli, J. Frigerio, D. Chrastina, G. Isella, T. Dieing, and D. J. Paul, “Extending the emission wavelength of Ge nanopillars to 2.25 μ m using silicon nitride stressors,” Opt. Express 23, 18193- 18202 (2015).
    • 14. A. Ghrib, M. El Kurdi, M. de Kersauson, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, and P. Boucaud, “Tensile-strained germanium microdisks,” Appl. Phys. Lett. 102, 221112 (2013).
    • 15. A. Ghrib, M. El Kurdi, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, M. Chaigneau, R. Ossikovski, I. Sagnes, and P. Boucaud, “All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities,” Advanced Optical Materials 3, 353-358 (2015).
    • 16. A. Z. Al-Attili, S. Kako, M. Husain, F. Gardes, N. Higashitarumizu, S. Iwamoto, Y. Arakawa, Y. Ishikawa, H. Arimoto, K. Oda, T. Ido, and S. Saito, “Whispering gallery mode resonances from ge micro-disks on suspended beams,” Frontiers in Materials 2 (2015).
    • 17. R. Geiger, J. Frigerio, M. J. Su¨ess, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Excess carrier lifetimes in Ge layers on Si,” Appl. Phys. Lett. 104, 062106 (2014).
    • 18. M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent, and D. J. Paul, “Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching,” J. Vac. Sci. Technol. B 30, 06FF02 (2012).
    • 19. M. M. Mirza, D. A. MacLaren, A. Samarelli, B. M. Holmes, H. Zhou, S. Thoms, D. MacIntyre, and D. J. Paul, “Determining the electronic performance limitations in top-down-fabricated si nanowires with mean widths down to 4 nm,” Nano Lett. 14, 6056-6060 (2014).
    • 20. K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectron J. 37, 519-525 (2006).
    • 21. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. Royal. Soc. London A: Maths. Phys. Char. 82, 172-175 (1909).
    • 22. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, M. Cardona, and R. Island, “Effect of static uniaxial stress on the Raman Spectrum of silicon,” Solid State Commun. pp. 133-138.
    • 23. D. Lockwood, Light Scattering in Semiconductor Structures and Superlattices, vol. 273 of NATO ASI Series (Springer US, 1991).
    • 24. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Midinfrared all-optical modulation in low-loss germanium-on-silicon waveguides,” Opt. Lett. 40, 268-271 (2015).
    • 25. Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxidesemiconductor field-effect transistors,” J. Appl. Phys. 101, 104503 (2007).
    • 26. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, “Nextnano: General purpose 3-d simulations,” IEEE Trans. Electron Dev. 54, 2137-2142 (2007).
    • 27. I. De Wolf, H. E. Maes, and S. K. Jones, “Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment,” J. Appl. Physics 79, 7148-7156 (1996).
    • 28. M. Prost, M. E. Kurdi, A. Ghrib, S. Sauvage, X. Checoury, N. Zerounian, F. Aniel, G. Beaudoin, I. Sagnes, F. Boeuf, and P. Boucaud, “Tensile-strained germanium microdisk electroluminescence,” Opt. Express 23, 6722- 6730 (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • RCUK | Engineering Quantum Techno...

Related to

  • fet-fp7FET Open: FET-Open Xtrack
  • fet-fp7FET Open: GErmanium MId-infrared plasmoNIcs for sensing

Cite this article