Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Anelone, Anet Jorim Norbert (2017)
Languages: English
Types: Doctoral thesis
This thesis argues that variable structure control theory finds application in immunology. The immune system maintains a healthy state by using feedback to switch on and off immune responses. Experimental and mathematical work has analysed the dynamics of the immune response of T cells, relatively little attention has been paid to examine the underlying control paradigm. Besides, in modelling and simulation studies, it is necessary to evaluate the impact of uncertainty and perturbations on immunological dynamics. This is important to deliver robust predictions and insights. These facts motivate considering variable structure control techniques to investigate the control strategy and robustness of the immune system in the context of immunity to infection and tolerance. The results indicate that the dynamic response of T cells following foreign or self-antigen stimulation behaves as a naturally occurring switched control law. Further, the reachability analysis from sliding mode control highlights dynamical conditions to assess the performance and robustness of the T cell response dynamics. Additionally, this approach delivers dynamical conditions for the containment of Human Immunodeficiency Virus (HIV) infection by the HIV-specific CD8+ T cell response and antiretroviral therapy by enforcing a sliding mode on a manifold associated with the infection-free steady-state. This condition for immunity reveals particular patterns for early diagnosis of eventual success, marginal and failure cases of antiretroviral therapy. Together, the findings in this thesis evidence that variable structure control theory presents a useful framework to study health and disease dynamics as well as to monitor the performance of treatment regimes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Anelone, Anet J.N., Spurgeon, Sarah K., Modelling and simulation of the dynamics of the antigenspeci c T cell response using variable structure control theory, 2016, PLOS ONE 11(11): e0166163. doi: 10.1371/journal.pone.0166163
    • 2. Anelone, Anet J.N., Spurgeon, Sarah K., Prediction of the Containment of HIV Infection by Antiretroviral Therapy - a Variable Structure Control Approach, IET Systems Biology, 2016, DOI: 10.1049/iet-syb.2016.0028
    • 3. Anelone, Anet J.N., Orlov, Yury, Spurgeon, Sarah K., Synergies between the dynamics of the immune response of T cells and the variable structure control paradigm, Recent Advances in Sliding Modes (RASM), 2015 International Workshop on , vol., no., pp.1,6, 9-11 April 2015
    • 4. Anelone, Anet J.N., Oza, Harsal B., Spurgeon, Sarah K., The immune system: A variable structure control perspective, Proceedings of the 19th IFAC World Congress, 24-29 August 2014, Cape Town, South Africa.
    • 5. Anelone, Anet J.N., Orlov, Yury, Spurgeon, Sarah K., Modelling the self-tolerance mechanisms of T cells: An adaptive sliding mode control approach, Control (CONTROL), 2014 UKACC International Conference on, vol., no., pp.573,578, 9-11 July 2014 doi: 10.1109/CONTROL.2014.6915203
    • [1] R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed, and A. S. Perelson, \Recruitment times, proliferation, and apoptosis rates during the cd8+ t-cell response to lymphocytic choriomeningitis virus," Journal of Virology, vol. 75, no. 22, pp. 10 663{10 669, 2001. [Online]. Available: http://jvi.asm.org/content/75/22/10663.abstract
    • [2] E. West, B. Youngblood, W. Tan, H. Jin, K. Araki, G. Alexe, B. Konieczny, S. Calpe, G. Freeman, C. Terhorst, W. Haining, and R. Ahmed, \Tight regulation of memory cd8+ t cells limits their e ectiveness during sustained high viral load," Immunity, vol. 35, no. 2, pp. 285 { 298, 2011.
    • [3] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback control of dynamic systems, ser. Alternative Etext Formats. Pearson, 2010, no. v. 10. [Online]. Available: https://books.google.co.uk/books?id=J-spAQAAMAAJ
    • [4] H. Shanechi, \Continuous and discrete control systems modeling, identi cation, design, and implementation, john dorsey, 2002, mcgraw hill, new york, 727 pages. isbn 0-07-248308-3," International Journal of Adaptive Control and Signal Processing, vol. 18, no. 5, pp. 487{488, 2004. [Online]. Available: http://dx.doi.org/10.1002/acs.818
    • [5] N. S. Nise, Control systems engineering /, 6th ed. Singapore :: Wiley (Asia) Pte,, c2011., previous ed.: Hoboken, N.J., c2008.
    • [6] V. I. Utkin, Sliding modes and their application to variable structure systems. Moscow: MIR Publication House, 1978.
    • [7] V. Utkin, \Variable structure system with sliding mode," IEEE Trans. on Control Systems Technology, vol. 10, no. 6, pp. 780{792, 1977.
    • [8] J. Y. Hung, W. Gao, and J. C. Hung, \Variable structure control: A survey," IEEE Trans. on Industrial Electronics, vol. 40, no. 1, pp. 2{22, 1993.
    • [9] N. Burroughs, B. Oliveira, A. Pinto, and H. Sequeira, \Sensibility of the quorum growth thresholds controlling local immune responses. math. comput." Math. Comput. Model., vol. 47, p. 714725, 2008.
    • [10] C. Edwards and S. K. Spurgeon, Sliding mode control: theory and applications. CRC Press, 1998.
    • [11] W. Chen and M. Saif, \Adaptive actuator fault detection, isolation and accommodation in uncertain systems," Int. J. Control, vol. 80, no. 1, pp. 45{63, 2007.
    • [12] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-tolerant Control. Berlin: Springer, 2003.
    • [13] A. T. Azar and Q. Zhu, Advances and applications in sliding mode control systems. Springer, 2015.
    • [14] J. Slotine and W. Li, \Applied nonlinear control, prentice-hall, englewood cli s, nj, 1991," 1998.
    • [15] H.-M. Chen, J.-C. Renn, and J.-P. Su, \Sliding mode control with varying boundary layers for an electro-hydraulic position servo system," The International Journal of Advanced Manufacturing Technology, vol. 26, no. 1-2, pp. 117{123, 2005.
    • [16] lyas Eker, \Second-order sliding mode control with experimental application," fISAg Transactions, vol. 49, no. 3, pp. 394 { 405, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0019057810000297
    • [17] V. Utkin and J. Shi, \Integral sliding mode in systems operating under uncertainty conditions," in Decision and Control, 1996., Proceedings of the 35th IEEE Conference on, vol. 4, Dec 1996, pp. 4591{4596 vol.4.
    • [18] H. K. Khalil and J. Grizzle, Nonlinear systems. 2002, vol. 3.
    • [19] C. Edwards, A. Akoachere, and S. K. Spurgeon, \Sliding-mode output feedback controller design using linear matrix inequalities," IEEE Trans. on Automat. Control, vol. 46, no. 2, pp. 115{119, 2001.
    • [20] G. Bartolini, A. Ferrara, E. Usai, and V. Utkin, \On multi-input chattering-free second-order sliding mode control," Automatic Control, IEEE Transactions on, vol. 45, no. 9, pp. 1711{1717, 2000.
    • [21] J. A. Burton and A. S. I. Zinober, \Continuous approximation of variable structure control," Int. J. Systems Sci., vol. 17, pp. 876{885, 1986.
    • [22] M.-S. Chen, Y.-R. Hwang, and M. Tomizuka, \A state-dependent boundary layer design for sliding mode control," IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1677{1681, Oct 2002.
    • [23] H. Lee and V. I. Utkin, \Chattering suppression methods in sliding mode control systems," Annual Reviews in Control, vol. 31, no. 2, pp. 179 { 188, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1367578807000363
    • [24] C. Edwards and S. K. Spurgeon, \Sliding mode stabilisation of uncertain systems using only output information," Int. J. Control, vol. 62, no. 5, pp. 1129{1144, 1995.
    • [25] V. I. Utkin and A. S. Poznyak, \Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method," Automatica, vol. 49, no. 1, pp. 39 { 47, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0005109812004694
    • [26] C. Edwards, S. K. Spurgeon, and R. G. Hebden, \On the design of sliding mode output feedback controllers," Int. J. Control, vol. 76, no. 9, pp. 893{905, 2003.
    • [27] T. Floquet, C. Edwards, and S. K. Spurgeon, \On unknown input sliding mode observers," in Proceedings of IEEE International Workshop on Varaibe Structure System-VSS'06, Sardinia, Italy, 2006.
    • [28] C. P. Tan and C. Edwards, \Sliding mode observers for robust detection and reconstruction of actuator sensor faults," Int. J. Robust Nonlinear Control, vol. 13, no. 5, pp. 443{463, 2003.
    • [29] R. J. D. Boer and A. S. Perelson, \Quantifying t lymphocyte turnover," Journal of Theoretical Biology, vol. 327, no. 0, pp. 45 { 87, 2013.
    • [30] A. S. Perelson and R. Ribeiro, \Modeling the within-host dynamics of HIV infection," BMC Biology, vol. 11, no. 1, p. 96, 2013. [Online]. Available: http://www.biomedcentral.com/1741-7007/11/96
    • [31] K. Bluestone, J.A. amd Herold and G. Eisenbarth, \Genetics,pathogenesis and clinical interventions intype1diabetes." Nature, vol. 464, p. 12931300, 2010.
    • [32] C. T. Bergstrom and R. Antia, \How do adaptive immune systems control pathogens while avoiding autoimmunity?" Trends in Ecology & Evolution, vol. 21, no. 1, pp. 22 { 28, 2006.
    • [33] A. Arazi, W. F. P. III, R. M. Ribeiro, A. S. Perelson, and N. Hacohen, \Human systems immunology: Hypothesis-based modeling and unbiased data-driven approaches," Seminars in Immunology, vol. 25, no. 3, pp. 193 { 200, 2013, system Immunology.
    • [34] R. M. Ribeiro, L. Qin, L. L. Chavez, D. Li, S. G. Self, and A. S. Perelson, \Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection," Journal of Virology, vol. 84, no. 12, pp. 6096{6102, 2010. [Online]. Available: http://jvi.asm.org/content/84/12/6096.abstract
    • [35] M. A. Sta ord, L. COREY, Y. Cao, E. S. Daar, D. D. HO, and A. S. Perelson, \Modeling plasma virus concentration during primary HIV infection," Journal of Theoretical Biology, vol. 203, no. 3, pp. 285 { 301, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022519300910762
    • [36] J. M. Conway and A. S. Perelson, \Post-treatment control of hiv infection," Proceedings of the National Academy of Sciences, vol. 112, no. 17, pp. 5467{5472, 2015. [Online]. Available: http://www.pnas.org/content/112/17/5467.abstract
    • [37] K. Murphy, P. Travers, M. Walport, and C. Janeway, Janeway's immunobiology, 8th ed. Garland Science, New York, 2012.
    • [38] R. Antia, C. Bergstrom, S. S. Pilyungin, S. M. Kaech, and R. Ahmed, \Models of cd8+ responses: 1. what is the antigen-independent proliferation program," Journal of Theoretical Biology, vol. 221, no. 4, pp. 585 { 598, 2003.
    • [39] R. De Boer, D. Homann, and A. S. Perelson, \Di erent dynamics of cd4+ and cd8+ t cell responses during and after acute lymphocytic choriomeningitis virus infection," The Journal of Immunology, vol. 171, no. 8, pp. 3928{3935, 2003.
    • [40] H. K. Alexander and L. M. Wahl, \Self-tolerance and autoimmunity in a regulatory T cell model," Bulletin of Mathematical Biology, vol. 73, no. 1, pp. 33{71, 2011.
    • [41] F. M. Burnet, The Clonal Selection Theory of Acquired Immunity. Cambrige: Cambridge University, 1959.
    • [42] T. Veiga-Parga, S. Sehrawat, and B. T. Rouse, \Role of regulatory t cells during virus infection," Immunological reviews, vol. 255, no. 1, pp. 182{196, 2013.
    • [43] V. P. Badovinac, K. A. N. Messingham, S. E. Hamilton, and J. T. Harty, \Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host," The Journal of Immunology, vol. 170, no. 10, pp. 4933{4942, 2003.
    • [44] S. M. Kaech and R. Ahmed, \Memory CD8+ T cell di erentiation: initial antigen encounter triggers a developmental program in naive cells," Nature immunology, vol. 2, no. 5, pp. 415{422, 2001.
    • [45] V. P. Badovinac, B. B. Porter, and J. T. Harty, \Programmed contraction of CD8+ T cells after infection," Nature immunology, vol. 3, no. 7, pp. 619{626, 2002.
    • [46] R. J. D. Boer and A. Perelson, \Towards a general function describing t cell proliferation," Journal of Theoretical Biology, vol. 175, no. 4, pp. 567 { 576, 1995.
    • [47] P. Kim, P. P. Lee, and D. Levy, \Basic principles in modeling adaptive regulation and immunodominance," in Mathematical Methods and Models in Biomedicine. Springer, 2013, pp. 33{57.
    • [48] C. L. Althaus, V. V. Ganusov, and R. J. De Boer, \Dynamics of CD8+ T cell responses during acute and chronic lymphocytic choriomeningitis virus infection," The Journal of Immunology, vol. 179, no. 5, pp. 2944{2951, 2007.
    • [49] C. L. Althaus and R. J. De Boer, \Implications of CTL-Mediated killing of HIVInfected cells during the non-productive stage of infection," PLoS ONE, vol. 6, no. 2, p. e16468, 02 2011.
    • [50] S. Sakaguchi, N. Sakaguchi, I. M. Asano, M., and M. Toda, \Immunological selftolerance maintained by activated t-cells expressing il-2 receptor alpha-chains (cd25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases." J. Immunol., vol. 155, no. 1, p. 11511164, 1995.
    • [51] S. Iwami, Y. Takeuchi, Y. Miura, T. Sasaki, and T. Kajiwara, \Dynamical properties of autoimmune disease models: tolerance, are-up, dormancy." J. of Theoretical Biology, vol. 246, pp. 646{659, 2007.
    • [52] S. Iwami, Y. Takeuchi, K. Iwamoto, and M. Naruo, Y.and Yasukawa, \A mathematical designof vector vaccine against autoimmune disease." J.Theor.Biol., vol. 256, p. 382392, 2009.
    • [53] M. Simonov, R. A. Rawlings, N. Comment, S. E. Reed, X. Shi, and P. W. Nelson, \Modeling adaptive regulatory t-cell dynamics during early hiv infection," PLoS ONE, vol. 7, no. 4, p. e33924, 04 2012.
    • [54] D. S. Callaway and A. S. Perelson, \Hiv-1 infection and low steady state viral loads," Bulletin of Mathematical Biology, vol. 64, no. 1, pp. 29{64, 2002.
    • [55] R. J. De Boer, \Which of our modeling predictions are robust?" PLoS Comput Biol, vol. 8, no. 7, p. e1002593, 07 2012. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pcbi.1002593
    • [56] C. L. Althaus and R. J. De Boer, \Implications of ctl-mediated killing of hiv-infected cells during the non-productive stage of infection," PLoS ONE, vol. 6, p. e16468, 02 2011.
    • [57] S. G. Deeks and B. D. Walker, \Human immunode ciency virus controllers: Mechanisms of durable virus control in the absence of antiretroviral therapy," Immunity, vol. 27, no. 3, pp. 406 { 416, 2007. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S1074761307004141
    • [58] M. Elemans, N.-K. S. Al Basatena, and B. Asquith, \The e ciency of the human CD8+ T cell response: How should we quantify it, what determines it, and does it matter?" PLoS Comput Biol, vol. 8, no. 2, p. e1002381, 02 2012.
    • [59] H. Wu, H. Zhu, H. Miao, and A. S. Perelson, \Parameter identi ability and estimation of HIV/AIDS dynamic models," Bulletin of mathematical biology, vol. 70, no. 3, pp. 785{799, 2008.
    • [60] A. S. Perelson and P. W. Nelson, \Mathematical analysis of HIV-1 dynamics in vivo," SIAM Review, vol. 41, pp. 3{44, 1998.
    • [61] C. J. Fox, P. S. Hammerman, and C. B. Thompson, \Fuel feeds function: energy metabolism and the t-cell response," Nature Reviews Immunology, vol. 5, no. 11, pp. 844{852, 2005.
    • [62] C. Edwards, S. K. Spurgeon, and R. J. Patton, \Sliding mode observers for fault detection and isolation," Automatica, vol. 36, no. 4, pp. 541{553, 2000.
    • [63] B. Xu, M. Sun, and W. Fan, \Dynamic-boundary-layer based nonlinear robust control for robotic systems," in Electrical and Control Engineering (ICECE), 2010 International Conference on, June 2010, pp. 5182{5185.
    • [64] F. Plestan, Y. Shtessel, V. Brgeault, and A. Poznyak, \New methodologies for adaptive sliding mode control," International Journal of Control, vol. 83, no. 9, pp. 1907{1919, 2010. [Online]. Available: http://www.tandfonline.com/doi/abs/10. 1080/00207179.2010.501385
    • [65] S. Drakunov and V. Utkin, \Sliding mode observers. tutorial," in Proc. of 34th IEEE CDC, vol. 4, New Orleans, LA, 1995, pp. 3376{3378.
    • [66] C. Edwards and S. K. Spurgeon, \Discussion on: `a sliding mode observer based FDI scheme for the ship benchmark'," European Journal of Control, vol. 6, pp. 585{586, 2000.
    • [67] A. R. Galimidi and B. R. Barmish, \The constrained Lyapunov problem and its application to robust output feedback stabilization," IEEE Trans. on Automat. Control, vol. 31, no. 5, pp. 410{419, 1986.
    • [68] G. Bartolini, A. Ferrara, and E. Usai, \Chattering avoidance by second-order sliding mode control," IEEE Trans. on Automat. Control, vol. 43, no. 2, pp. 241{246, 1998.
    • [69] J. Murray, Mathematical Biology. Springer, Berlin, 1989.
    • [70] G. Jianguo, L. Yuchao, Z. Jun, and W. Guoqing, \A new nonlinear sliding mode control system design," in The 27th Chinese Control and Decision Conference (2015 CCDC), May 2015, pp. 4490{4493.
    • [71] P. Brown D., Rothery, Models in biology: Mathematics, Statistics and computing. J. Wiley and Sons, 1993.
    • [72] N. F. Britton, Essentials of mathematical biology. Berlin: Spinger, 2003.
    • [73] R. de Boer, Theoretical Biology and Bioinformatics. Utrecht University, 2013.
    • [74] M. D. Martin, S. A. Condotta, J. T. Harty, and V. P. Badovinac, \Population dynamics of naive and memory cd8 t cell responses after antigen stimulations in vivo," The Journal of Immunology, vol. 188, no. 3, pp. 1255{1265, 2012. [Online].
    • Available: http://www.jimmunol.org/content/188/3/1255.abstract
    • [75] M. Elemans, N.-K. S. Al Basatena, N. R. Klatt, C. Gkekas, G. Silvestri, and B. Asquith, \Why don't CD8+ T cells reduce the lifespan of siv-infected cells in vivo?" PLoS Comput Biol, vol. 7, no. 9, p. e1002200, 09 2011.
    • [76] V. Ganusov, \Discriminating between di erent pathways of memory CD8+ T cell di erentiation," The Journal of Immunology, vol. 179, no. 8, pp. 5006{5013, 2007.
    • [77] M. M. Peet, P. S. Kim, and P. P. Lee, \Biological circuit models of immune regulatory response: A decentralized control system." in CDC-ECE. IEEE, 2011, pp. 3020{ 3025.
    • [78] M. M. Delmastro-Greenwood and J. D. Piganelli, \Changing the energy of an immune response," American journal of clinical and experimental immunology, vol. 2, no. 1, p. 30, 2013.
    • [79] G. J. van der Windt, R. Ahmed et al., \CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability," Proceedings of the National Academy of Sciences, vol. 110, no. 35, pp. 14 336{14 341, 2013.
    • [80] M. B. Oldstone, M. Nerenberg, P. Southern, J. Price, and H. Lewicki, \Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response," Cell, vol. 65, no. 2, pp. 319 { 331, 1991. [Online]. Available: http://www.sciencedirect.com/science/article/pii/009286749190165U
    • [81] A. DeFranco, R. Locksley, and M. Robertson, \Immunity: The immune response in infectious and in ammatory disease." New Science Press Ltd., 2007.
    • [82] K. Blyuss and L. Nicholson, \The role of tunable activation thresholds in the dynamics of autoimmunity," J. Theor. Bio., vol. 308, pp. 45{55, 2012.
    • [83] J. Bluestone and Q. Tang, \How do cd4+cd25+ regulatory t cells control autoimmunity?" Curr. Opin. Immunol., vol. 17, no. 1, p. 638642, 2005.
    • [84] A. Toda and C. Piccirillo, \Development and function of naturally occurring cd4+cd25+ regulatory t cells." J. Leukoc. Biol., vol. 80, no. 1, p. 458470, 2006.
    • [85] S. Yamazaki, K. Inaba, K. Tarbell, and R. Steinman, \Dendritic cells expand antigenspeci c foxp3+cd25+cd4+ regulatory t cells including suppressors of alloreactivity." Immunol. Rev., vol. 12, p. 314329, 2006.
    • [86] K. Wing, Z. Fehervari, and S. Sakaguchi, \Emerging possibilities in the development and function of regulatory t cells." Int. Immunol., vol. 18, no. 1, p. 9911000, 2006.
    • [87] N. Burroughs, M. Ferreira, B. Oliveira, and A. Pinto, \Autoimmunity arising from bystander proliferation of t cells in an immune response model," Mathematical and Computer Modelling, vol. 53, no. 78, pp. 1389 { 1393, 2011, Mathematical Methods and Modelling of Biophysical Phenomena. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0895717710000385
    • [88] M. Miyara and S. Sakaguchi, \Natural regulatory t cells: mechanisms of suppression." TRENDS Mol. Med., vol. 132, no. 1, p. 108116, 2004.
    • [89] N. Misra, J. Bayry, S. Lacroix-Desmazes, M. Kazatchkine, and S. Kaveri, \Cutting edge: human cd4+cd25+ t cells restrain the maturation and antigen-presenting function of dendritic cells." J. Immunol., vol. 172, no. 1, p. 46764680, 2004.
    • [90] C. Utzny and N. J. Burroughs, \Pertubation theory analysis of competition in a heterogenous population." Physica D, vol. 175, pp. 109{126, 2003.
    • [91] V. Ganusov, D. Barber, and R. De Boer, \Killing of targets by cd8+ t cells in the mouse spleen follows the law of mass action," PLoS ONE, vol. 6, no. 1, p. e15959, 01 2011.
    • [92] Q. Tang and J. A. Bluestone, \Regulatory t-cell therapy in transplantation: Moving to the clinic," Cold Spring Harbor Perspectives in Medicine, vol. 3, no. 11, 2013.
    • [93] P. S. Kim, P. P. Lee, and D. Levy, \Emergent group dynamics governed by regulatory cells produce a robust primary t cell response," Bulletin of mathematical biology, vol. 72, no. 3, pp. 611{644, 2010.
    • [94] T. C. Wirth, M. D. Martin, G. Starbeck-Miller, J. T. Harty, and V. P. Badovinac, \Secondary cd8+ t-cell responses are controlled by systemic in ammation," European Journal of Immunology, vol. 41, no. 5, pp. 1321{1333, 2011.
    • [95] T. C. Wirth, J. T. Harty, and V. P. Badovinac, \Modulating numbers and phenotype of CD8+ T cells in secondary immune responses," European journal of immunology, vol. 40, no. 7, pp. 1916{1926, 2010.
    • [96] M. A. Nowak and C. R. M. Bangham, \Population dynamics of immune responses to persistent viruses," Science, vol. 272, no. 5258, pp. 74{79, 1996.
    • [97] B. B. Porter and J. T. Harty, \The onset of cd8+-t-cell contraction is in uenced by the peak of listeria monocytogenes infection and antigen display," Infection and Immunity, vol. 74, no. 3, pp. 1528{1536, 2006.
    • [98] L. Jones and A. Perelson, \Opportunistic infection as a cause of transient viremia in chronically infected hiv patients under treatment with haart," Bulletin of Mathematical Biology, vol. 67, no. 6, pp. 1227 { 1251, 2005.
    • [99] B. Kohler, \Mathematically modeling dynamics of t cell responses: Predictions concerning the generation of memory cells," Journal of Theoretical Biology, vol. 245, no. 4, pp. 669 { 676, 2007.
    • [100] G. Bocharov, B. Ludewig, A. Bertoletti, P. Klenerman, T. Junt, P. Krebs, T. Luzyanina, C. Fraser, and R. M. Anderson, \Underwhelming the immune response: E ect of slow virus growth on CD8+-T-Lymphocyte responses," Journal of Virology, vol. 78, no. 5, pp. 2247{2254, 2004.
    • [101] B. Aloliwi and H. K. Khalil, \Robust adaptive output feedback control of nonlinear systems without persistence of excitation," Automatica, vol. 33, no. 11, pp. 2025{ 2032, 1997.
    • [102] G. B. Stan, F. Belmudes, R. Fonteneau, F. Zeggwagh, M.-A. Lefebvre, C. Michelet, and D. Ernst, \Modelling the in uence of activation-induced apoptosis of CD4+ and CD8+ T-cells on the immune system response of a hiv-infected patient," Systems Biology, IET, vol. 2, no. 2, pp. 94{102, March 2008.
    • [103] J. M. Grayson, L. E. Harrington, J. G. Lanier, E. J. Wherry, and R. Ahmed, \Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo," The Journal of Immunology, vol. 169, no. 7, pp. 3760{3770, 2002.
    • [104] H. K. Khalil, Nonlinear Systems (Third Edition). 2002.
    • [105] M. F. Chevalier and L. Weiss, \The split personality of regulatory t cells in hiv infection," Blood, vol. 121, no. 1, pp. 29{37, 2013.
    • [106] A. Y. Rudensky, \Regulatory t cells and foxp3," Immunological Reviews, vol. 241, no. 1, pp. 260{268, 2011. [Online]. Available: http://dx.doi.org/10.1111/j. 1600-065X.2011.01018.x
    • [107] N. J. oughs, B. Oliveira, and A. A. Pinto, \Regulatory t cell adjustment of quorum growth thresholds and the control of local immune responses," Journal of Theoretical Biology, vol. 241, no. 1, pp. 134 { 141, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022519305004959
    • [108] R. E. Billingham, L. Brent, P. B. Medawar et al., \Actively acquired tolerance'of foreign cells." Nature, vol. 172, pp. 603{6, 1953.
    • [109] S. R. Guehler, R. J. Finch, J. A. Bluestone, and T. A. Barrett, \Increased threshold for tcr-mediated signaling controls self reactivity of intraepithelial lymphocytes," The Journal of Immunology, vol. 160, no. 11, pp. 5341{5346, 1998.
    • [110] M. A. Gronski, J. M. Boulter, D. Moskophidis, L. T. Nguyen, K. Holmberg, A. R. Elford, E. K. Deenick, H. O. Kim, J. M. Penninger, B. Odermatt et al., \Tcr a nity and negative regulation limit autoimmunity," Nature medicine, vol. 10, no. 11, pp. 1234{1239, 2004.
    • [111] D. V. Prasad, S. Richards, X. M. Mai, and C. Dong, \B7s1, a novel fB7g family member that negatively regulates t cell activation," Immunity, vol. 18, no. 6, pp. 863 { 873, 2003. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S107476130300147X
    • [112] J. Borghans, R. deBoer, E. Sercarz, and V. Kumar, \T cell vaccination and experimental autoimmune encephalomyelitis: a mathematical model." J. Immunol., vol. 161, p. 10871093, 1998.
    • [113] M. S. Anderson and J. A. Bluestone, \The nod mouse: a model of immune dysregulation," Annu. Rev. Immunol., vol. 23, pp. 447{485, 2005.
    • [114] F. S. Wong, I. Visintin, L. Wen, R. A. Flavell, and C. A. Janeway, \Cd8 t cell clones from young nonobese diabetic (nod) islets can transfer rapid onset of diabetes in nod mice in the absence of cd4 cells." The Journal of experimental medicine, vol. 183, no. 1, pp. 67{76, 1996.
    • [115] A. D. Bitmansour, D. C. Douek, V. C. Maino, and L. J. Picker, \Direct ex vivo analysis of human cd4+ memory t cell activation requirements at the single clonotype level," The Journal of Immunology, vol. 169, no. 3, pp. 1207{1218, 2002. [Online]. Available: http://www.jimmunol.org/content/169/3/1207.abstract
    • [116] H. Smith and P. D. Leenheer, \Virus Dynamics: A Global Analysis," SIAM J. Appl. Math, vol. 63, no. 4, pp. 1313{1327, 2003.
    • [117] L. B. Nicholson, A. C. Anderson, and V. K. Kuchroo, \Tuning t cell activation threshold and e ector function with cross-reactive peptide ligands," International immunology, vol. 12, no. 2, pp. 205{213, 2000.
    • [118] D. M. Fields, B.N. Knipe, Ed., Fields virology, 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, c2007, vol. 2, 2107-2214.
    • [119] N. Smith, P. Mlcochova, S. Watters, M. Aasa-Chapman, N. Rabin, S. Moore, S. Edwards, J. Garson, P. Grant, R. Ferns, A. Kashuba, N. Mayor, J. Schellekens, S. Marsh, A. McMichael, A. Perelson, D. Pillay, N. Goonetilleke, and R. Gupta, \Proof-of-principle for immune control of global hiv-1 reactivation in vivo," Clinical Infectious Diseases, 2015. [Online]. Available: http://cid.oxfordjournals.org/content/ early/2015/03/16/cid.civ219.abstract
    • [120] X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeker, M. A. Nowak, and B. H. Hahn, \Viral dynamics in human immunode ciency virus type 1 infection." Nature, vol. 373, pp. 117{122, 1995.
    • [121] R. M. Ribeiro, N. M. Dixit, and A. S. Perelson, \13 modelling the in vivo growth rate of hiv: implications for vaccination," in Multidisciplinary Approaches to Theory in Medicine, ser. Studies in Multidisciplinarity, R. Paton and L. A. McNamara, Eds. Elsevier, 2005, vol. 3, pp. 231 { 246. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1571083106800171
    • [122] R. J. De Boer, \Understanding the failure of cd8+ t-cell vaccination against simian/human immunode ciency virus," Journal of Virology, vol. 81, no. 6, pp. 2838{ 2848, 2007.
    • [123] D. E. Kirschner and G. F. Webb, \A mathematical model of combined drug therapy of HIV infection," Journal of Theoretical Medecine, vol. 1, no. 1, pp. 25 { 34, 1997.
    • [124] H. Chang, H. Shim, and J. Seo, \Control of immune response of hiv infection model by gradual reduction of drug dose," in Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 1, Dec 2004, pp. 1048{1054 Vol.1.
    • [125] H.-D. Kwon, \Optimal treatment strategies derived from a fHIVg model with drug-resistant mutants," Applied Mathematics and Computation, vol. 188, no. 2, pp. 1193 { 1204, 2007. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0096300306014639
    • [126] R. Zurakowski and A. R. Teel, \A model predictive control based scheduling method for HIV therapy," Journal of Theoretical Biology, vol. 238, no. 2, pp. 368 { 382, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0022519305002067
    • [127] H. Chang and A. Astol , \Immune response enhancement via controlled drug scheduling," in Decision and Control, 2007 46th IEEE Conference on, 2007, pp. 3919{3924.
    • [128] B. Costa and J. Lemos, \Nonlinear feedback control of a HIV-1 infection model," in Control Automation (MED), 2011 19th Mediterranean Conference on, June 2011, pp. 79{84.
    • [134] M. Brandt and G. Chen, \Feedback control of a biodynamical model of hiv-1," Biomedical Engineering, IEEE Transactions on, vol. 48, no. 7, pp. 754{759, 2001.
    • [135] G. E. L. van den Berk, P. H. J. Frissen, R. M. Regez, and P. J. G. M. Rietra, \Evaluation of the rapid immunoassay determine hiv 1/2 for detection of antibodies to human immunode ciency virus types 1 and 2," Journal of Clinical Microbiology, vol. 41, no. 8, pp. 3868{3869, 2003. [Online]. Available: http://jcm.asm.org/content/41/8/3868.abstract
    • [136] M. R. Zarrabi, M. H. Farahi, and S. E ati, \Using sliding mode control in stability treatment of HIV disease," Advanced Modeling and Optimization, vol. 14, no. 1, pp. 165{173, February 2012.
    • [137] X. Xia, \Estimation of HIV/AIDS parameters," Automatica, vol. 39, no. 11, pp. 1983 { 1988, 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0005109803002206
    • [138] H. Wu, \Statistical methods for HIV dynamic studies in AIDS clinical trials," Statistical Methods in Medical Research, vol. 14, no. 2, pp. 171{192, 2005.
    • [139] S. Gadhamsetty, A. Mare, J. Beltman, and de Boer R.J., \A general functional response of cytotoxic T lymphocyte-mediated killing of target cells," Biophysical Journal, vol. 106, no. 8, pp. 1780 { 1791, 2014.
    • [140] V. Muller, A. F. M. Maree, and R. J. De Boer, \Small variations in multiple parameters account for wide variations in HIV {1 set{points: a novel modelling approach," Proceedings of the Royal Society of London B: Biological Sciences, vol. 268, no. 1464, pp. 235{242, 2001.
    • [144] R. Kaul, F. A. Plummer, J. Kimani, T. Dong, P. Kiama, T. Rostron, E. Njagi, K. S. MacDonald, J. J. Bwayo, A. J. McMichael, and S. L. Rowland-Jones, \Hiv-1-speci c mucosal CD8+ lymphocyte responses in the cervix of hiv-1-resistant prostitutes in nairobi," The Journal of Immunology, vol. 164, no. 3, pp. 1602{1611, 2000.
    • [145] J. Murray, Mathematical Biology. Springer, Berlin., 1989.
    • [146] T. C. Friedrich, L. E. Valentine, L. J. Yant, E. G. Rakasz, S. M. Piaskowski, J. R. Furlott, K. L. Weisgrau, B. Burwitz, G. E. May, E. J. Leon et al., \Subdominant cd8+ t-cell responses are involved in durable control of aids virus replication," Journal of virology, vol. 81, no. 7, pp. 3465{3476, 2007.
    • [147] J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B. J. Scallon, J. Ghrayeb, M. A. Forman, D. C. Monte ori, E. P. Rieber, N. L. Letvin, and K. A. Reimann, \Control of viremia in simian immunode ciency virus infection by cd8+ lymphocytes," Science, vol. 283, no. 5403, pp. 857{860, 1999. [Online]. Available: http://science.sciencemag.org/content/283/5403/857
    • [148] M.-J. Mhawej, C. Brunet-Franois, R. Fonteneau, D. Ernst, V. Ferr, G.-B. Stan, F. Ra , and C. H. Moog, \Apoptosis characterizes immunological failure of HIV infected patients," Control Engineering Practice, vol. 17, no. 7, pp. 798 { 804, 2009.
    • [153] Q. Sun, L. Min, and Y. Kuang, \Global stability of infection-free state and endemic infection state of a modi ed human immunode ciency virus infection model," Systems Biology, IET, vol. 9, no. 3, pp. 95{103, 2015.
    • [155] D. A. Ouattara, M.-J. Mhawej, and C. H. Moog, \Clinical tests of therapeutical failures based on mathematical modeling of the HIV infection," Automatic Control, IEEE Transactions on, vol. 53, no. Special Issue, pp. 230{241, Jan 2008.
    • [161] A. Hartmann, S. Vinga, and J. M. Lemos, \Identi cation of hiv-1 dynamics - estimating the noise model, constant and time-varying parameters of long-term clinical data," in Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOSTEC 2012), 2012, pp. 286{289.
    • [162] X. Xia, \Brief estimation of HIV/AIDS parameters," Automatica, vol. 39, no. 11, pp. 1983{1988, Nov. 2003. [Online]. Available: http://dx.doi.org/10.1016/ S0005-1098(03)00220-6
    • [163] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, \Hiv-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time," Science, vol. 271, no. 5255, pp. 1582{1586, 1996.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok