LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: other, energy

Classified by OpenAIRE into

arxiv: Physics::Optics
Throughout the past few decades, science has progressed towards the ability to probe many extremely fast processes and a large amount of research has been aimed at the area of few-femtosecond pulse generation. This thesis describes the generation of coherent broadband radiation through two-colour pumping of molecular hydrogen confined to a unidirectional ring cavity, and the subsequent synthesis of high peak power and few-femtosecond pulses. A set of normalised semi-classical field equations are derived in Bloch form describing the process of ultra-broadband multi-frequency Raman generation or UMRG, and a 3-wave gain suppression analysis is derived from a subset of the plane wave UMRG field equations which describes gain suppression within the ring cavity in terms of both medium and cavity parameters. The gain suppression analysis is further generalised to include finite levels of linear two-photon frequency detuning of the pump beams. Simulations of the plane wave ultra-broadband multi-frequency Raman (UMRG) equations show that a broad frequency spectrum of mutually coherent sideband can be generated. The inverse Fourier transform of spectra generated in this way yields a train of high power near Fourier limited pulses in the time domain which can range from a few-femtoseconds in duration to tens of attoseconds with repetition rates equal to the Raman transition frequency. Pulses synthesised in this way are limited only by the level of medium dispersion, the reflection bandwidth of the chosen coupling mirror and the chosen Raman medium. Simulations of the transverse UMRG equations within the ring cavity geometry have shown ring cavity enhanced UMRG to be resilient to transverse effects such as finite beam width, beam diffraction and the transverse beam separation of the applied pump beams.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Introduction………………………………………………………………………………...1 1.1 Ti:Sapphire .............................................................................. 2 1.2 High harmonic generation....................................................... 3 1.3 Raman scattering..................................................................... 6 1.4 Optical micro-resonators......................................................... 8 1.5 Development of the theory of stimulated Raman scattering.. 9 1.6 Thesis content.......................................................................... 11
    • 2. Derivation of the UMRG equations................................................13 2.1 Semi-classical theory of Raman scattering............................... 13 2.2 The two-State Schrodinger equation....................................... 15 2.3 The optical Bloch equations and density matrix...................... 18 2.4 The molecular polarisation....................................................... 21 2.5 Wave vector mismatch............................................................. 22 2.6 Medium dynamics.................................................................... 23 2.7 The UMRG equations............................................................... 24 2.8 Cavity UMRG............................................................................ 27 3.1 The depleted pump model......................................................
    • 3.2 The small dispersion regime....................................................
    • 3.3 The gain parameter ±..........................................................
    • 3.4 Gain suppression vs numerical simulations............................
    • 4. The Gain suppression analysis with finite linear detuning .............52 4.1 The small dispersion regime................................................... 55 4.2 The gain parameter ±......................................................... 57 4.3 The Stokes and anti-Stokes sidebands.................................... 60
    • 5. Non-cavity UMRG and the ring cavity with a single pump..............63 5.1 Large levels of dispersion and long propagation lengths........ 67 5.2 The ring cavity with a single pump.......................................... 68 5.3 Medium excitation in the ring cavity....................................... 71 5.4 Sideband phase....................................................................... 73 s5i.m5uTlhaetioganisn...s.u..p..p..r..e..s.s..i.o..n...a..n..a..l.y.s..i.s..a..n..d...m...u..l.t..i.-.f.r.e..q..u..e..n...c.y.................. 75 5.6 Fourier synthesis of pulses....................................................... 77
    • 8. (1+1)D transverse UMRG.............................................................119 8.1 RMS width of the multi-frequency beam................................ 123 8.2 Transverse beam separation................................................... 127
    • 9. (1+2)D transverse UMRG.............................................................129 9.1 Transverse beam separation................................................... 133
    • 10. Linear and nonlinear detuning...................................................136 10.1 The non-cavity system........................................................... 138 10.2 Finite linear and nonlinear detuning...................................... 140 10.3 Nonlinear detuning and the cavity system............................. 142 10.4 Nonlinear detuning and gain suppression.............................. 144 10.5 Linear and nonlinear detuning in transverse UMRG.............. 146 10.6 Beam narrowing and beam broadening................................. 152 2 + + 1− 0, [1] [2] [3] [4] [5] [6] [7] [8] [9] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, P. Agostini, “Observationof a Train of Attosecond Pulses from High Harmonic Generation”, Science 292, 1689 - 1692 2001.
    • E. Goulielmakis et al, “Single-Cycle Nonlinear Optics”, Science 320, 1614 - 1617 (2008).
    • T. Brabec & F. Krausz, "Intense few-cycle laser fields: frontiers of nonlinear optics”, Rev. Mod. Phys. 72, 545-591 (2000).
    • F. Krausz & M. Ivanov, “Attosecond Physics”, Rev. Mod. Phys. 81, 163-234 (2009).
    • [55] T. Baba. et al, “Photonic crystals and microdisk cavities based on GaInAsPInP system”, IEEE Photon. Technol. Lett. 9, 878-880 (1997).
    • M. Pollinger et al, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator”, Phys. Rev. Lett. 103, 053901 (2009).
    • M. D. Duncan, R. Mahon, J. Reintjes and L.L. Tankersley, “Parametric Raman gain suppression in D2 and H2”, Opt. Lett. 11, 12 803-805 (1986).
    • Harris, "Raman self-focusing at maximum coherence", Optics letters. 27, 23 2094 - 2096 (2002).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article