LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baig, A. (2012)
Languages: English
Types: Doctoral thesis
Subjects:
Campylobacter jejuni is the world’s major cause of gastroenteritis in humans. Although motility, toxin production, adhesion and invasion are some of the key factors associated with C. jejuni pathogenesis, their mechanism in the disease process remains unclear. The key aim of this project is to study the genetic basis of hyperinvasiveness in a group of six C. jejuni strains which have been reported as hyperinvasive into human intestinal cell lines. Here, genomotyping of the hyperinvasive C. jejuni was performed by comparative genomic hybridization (CGH) against four low invasive C. jejuni strains. A group of 67 genes were identified as being present or highly divergent/absent in the hyperinvasive versus low invasive C. jejuni strains. Of these, nine genes were present and six genes were highly divergent/absent in all hyperinvasive C. jejuni. The PCR screening of these 15 genes in nine additional low invasive C. jejuni strains showed a significant association with the hyperinvasive phenotype. The majority of identified genes encoded proteins with essential cellular and metabolic functions along with some genes with known virulence related roles. Thus, the hyperinvasive phenotype is characterised by different functional networks rather than a single gene or gene cluster. All strains showed an overall genetic variability and the capsule, lipooligosaccharide, flagellar biosynthesis and restriction modification regions were the most diverse. The hierarchical clustering based on comparative genomic hybridization (CGH) did not group together the hyperinvasive C. jejuni as a single group and these strains possessed different MLST profiles.

Share - Bookmark

Cite this article