Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rombolà, Alessandro G.; Meredith, Will; Baronti, Silvia; Snape, Colin E.; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele (2015)
Publisher: ACS Publications
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: complex mixtures
The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs, changed and impacted differently on the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha-1) gave rise to a sharp increase in soil organic carbon which could be accounted for by an increase of BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g-1, and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 µg g-1 in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils, and decreased with time from 153 to 78 ng g-1 remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381-387.
    • 2. Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agronom. 2010, 105, 47-82.
    • 3. Spokas, K.A.; Cantrell, KB.; Novak, J.M; Archer, D.A.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J. et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973-989.
    • 4. Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473-9483.
    • 5. Jeffery, S.; Bezemer, T.M.; Cornelissen, G.; Kuyper. T.W.; Lehmann. J.; Mommer. L.; Sohi, S.P.; Van De Voorde, T.F.J .; Wardle, D.A.; Van Groenigen J.W. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy. 2015, 7, 1-13.
    • 6. Mukherjee, A; Lal, R. The biochar dilemma. Soil Res. 2014, 52, 217-230.
    • 7. van Laer, T.; de Smedt, P.; Ronsse, F.; Ruysschaert, G.; Boeckx, P.; Verstraete, W.; Buysse, J.; Lavrysen, L.J. Legal constraints and opportunities for biochar: a case analysis of EU law. GCB Bioenergy 2015, 7, 14-24.
    • 8. Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397- 420.
    • 9. Knicker, H; Hilscher, A; González-Vila, F.J; Almendros, G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 2008, 39, 935-939.
    • 10. Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247-1253.
    • 11. Harvey, O.R.; Kuo , L-J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert B.E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 2012, 46, 1415-1421.
    • 12. Wiedemeier, D. B.; Abiven, S.; Hockaday, W.C.; Keiluweit, M.; Kleber, M.; Masiello, C.A.; McBeath, A.V.; Nico, P.S.; Pyle, L.A.; Schneider, M.P.W. et al. Aromaticity and degree of aromatic condensation of char. Org.Geochem. 2015, 78, 135-143.
    • 13. Nguyen, B.T.; Lehmann, J.; Hockaday, W.C.; Joseph, S.; Masiello, C.A.; Temperature Sensitivity of Black Carbon Decomposition and Oxidation. Environ. Sci. Technol. 2010, 44, 3324-3331.
    • 14. Singh, B.P.; Cowie, A.L.; Smernik, R.J. Biochar Carbon Stability in a Clayey Soil As a Function of Feedstock and Pyrolysis Temperature. Environ. Sci. Technol. 2012, 46, 11770−11778.
    • 15. Ameloot , N.; Graber, E. R.; Verheijen, F. G. A.; De Neve, S. Interactions between biochar stability and soil organisms: review and research needs. European J.Soil Sci. 2013, 64, 379- 390.
    • 16. Mašek, O.; Brownsort, P.; Cross, A.; Sohi, S. Influence of production conditions on the yield and environmental stability of biochar. Fuel 2013, 103, 151-155.
    • 17. Kaal, J.; Cortizas, A.M.; Reyes, O.; Solino, M. Molecular characterization of Ulex europaeus biochar obtained from laboratory heat treatment experiments-a pyrolysisGC/MS study. J. Anal. Appl. Pyrol. 2012, 95, 205-212.
    • 18. Conti, R.; Rombolà, A.G.; Modelli, A.; Torri, C.; Fabbri. D. Evaluation of the thermal and environmental stability of switchgrass biochars by Py-GC-MS. J. Anal. Appl. Pyrol. 2014, 110, 239-247.
    • 19. McBeath, A.V.; Wurster, C.M.; Bird, M.I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass. Bioener. 2015, 73, 155-173.
    • 20. Wurster, C.M.; Saiz, G.; Schneider, M.P.W.; Schmidt, M.W.I.; Bird, M.I. Quantifying pyrogenic carbon from thermosequences of wood and grass using hydrogen pyrolysis. Org. Geochem. 2013, 62, 28-32.
    • 21. Meredith, W.; Ascough, P.L.; Bird, M.I. ; Large, D.J.; Snape, C.E. ; Song, J. ; Sun, Y. ; Tilston, E.L. Direct evidence from hydropyrolysis for the retention of long alkyl moieties in black carbon fractions isolated by acidified dichromate oxidation J. Anal. Appl. Pyrol.. 2013, 103, 232-239.
    • 22. Meredith, W.; Ascough, P.L.; Bird, M.I. ; Large, D.J.; Snape, C.E.; Sun, Y. ; Tilston, E.L. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim. Cosmochim. AC 2012, 97(15), 131-147.
    • 23. Cornelissen, G.; Gustafsson, O.; Bucheli, T.D.; Jonker, M.T.O.; Koelmans, A.A.;Van Noort, P.C.M. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kerogen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation. Environ.Sci.Technol. 2005, 39, 6881-6895.
    • 24. Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O'Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830-2838.
    • 25. Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91-118.
    • 26. Chen, B.; Yuan, M.; Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. Soils Sediments 2011, 11, 62-71.
    • 27. Quilliam, R.S.; Rangecroft, S.; Emmett, B.A.; Deluca, T.H.; Jones, D.L. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 2013, 5, 96-103.
    • 28. Bruun, E.W; Hauggaard-Nielsen, H.; Ibrahim, N.; Egsgaard, H.; Ambus, P.; Jensen, P.A.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg. 2011, 35, 1182-1189.
    • 29. Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345-2347.
    • 30. Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1295-1301.
    • 31. Fang , Y; Singh, B.; Singh, B.P. Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem. 2015, 80, 136-145.
    • 32. Naisse, C.; Girardin, C.; Lefevre, R.; Pozzi, A.; Maas, R.; Stark, A.; Rumpel, C. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy 2015, 7, 488-496.
    • 33. Kuzyakov, Y.; Bogomolova, I.; Glaser B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229-236.
    • 34. Hilscher, A., Knicker, H. Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28 month microcosm experiment. Org. Geochem. 2011, 42, 42-54.
    • 35. Li, F.; Cao, X.D.; Zhao, L.; Wang, J.F; Ding, Z.L. Effects of Mineral Additives on Biochar Formation: Carbon Retention, Stability, and Properties. Environ. Sci. Technol. 2014, 48, 11211−11217.
    • 36. Nguyen, B.T.; Lehmann, J.; Kinyangi, J.; Smernik, R.; Riha, S.J.; Engelhard, M.H.. Longterm black carbon dynamics in cultivated soil. Biogeochem. 2009, 92:163-176.
    • 37. Rumpel C.; Ba, A.; Darboux, F.; Chaplot, V.; Planchon, O. Erosion budget and process selectivity of black carbon at meter scale. Geoderma 2009, 154, 131-137.
    • 38. Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology 2010, 16(4), 1366-1379.
    • 39. Malghani, S.; Jüschke, E.; Baumert, J.; Thuille, A.; Antonietti, M.; Trumbore, S.; Gleixner, G. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biol. Fert. Soils 2015, 51, 123-134.
    • 40. Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Europ. J. Agron. 2014, 53, 38-44.
    • 41. Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agr. Ecosyst. Environ. 2015, 201, 20-25.
    • 42. U.S.D.A. (United States Department of Agriculture). Natural Resources Conservation Service. National Soil Survey Handbook, 2005.
    • 43. Fabbri, D.; Rombolà, A.G.; Torri, C.; Spokas, K.A. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J. Anal. Appl. Pyrol. 2013, 103, 60-67.
    • 44. Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 1999, 29, 111-129.
    • 45. Meredith, W.; Sun, C.-G.; Snape, C.E.; Sephton, M.A.; Love, G.D. The use of model compounds to investigate the release of covalently bound biomarkers via hydropyrolysis. Org. Geochem. 2006, 37, 1705-1714.
    • 46. Spring, S.; Schulze, R.; Overmann, J.; Schleifer, K.-H. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol. Rev. 2000, 24, 573-590.
    • 47. Bucheli, T.D.; Bachmann, H.J.; Blum, F.; Bürge, D.; Giger, R.; Hilber, I.; Keita, J.; Leifeld, J.; Schmidt, H.-P. On the heterogeneity of biochar and consequences for itsrepresentative sampling. J.Anal.Appl.Pyrol. 2014, 107, 25-30.
    • 48. Riding, M.J.; Doick, K.J.; Martin, F.L.; Jones, K.C.; Semple, K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. J.Hazard.Mater. 2013, 261, 687- 700.
    • 49. Cachada, A.; Pereira, R.; Ferreira da Silva, E.; Duarte, A.C. The prediction of PAHs bioavailability in soils using chemical methods: State of the art and future challenges. Sci. Total Environ. 2014, 472, 463-480.
    • 50. Arp, H.P.H; Hale, S.E.; Kruså, M.E.; Cornelissen,G.; Grabanski, C.B.; Miller, D.J; Hawthorne, S.B. Review of Polyoxymethylene Passive Sampling Methods For Quantifying Freely Dissolved Porewater Concentrations of Hydrophobic Organic Contaminants. Environ. Toxicol. Chem. 2015, 34, 710-720.
    • 51. Nam, J.J.; Sweetman, A.J.; Jones, K.C. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J.Environ.Monitor. 2009, 11, 45-48.
    • 52. Keiluweit, M.; Kleber, M.; Sparrow, M.A.; Simoneit, B.R.T.; Prahl, F.G. Solvent extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 2012, 46, 9333-9341.
    • 53. Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J.Environ. Qual. 2012, 41, 990- 1000.
    • 54. Wiedemeier, D.B.; Brodowski, S.; Wiesenberg, G.L.B. Pyrogenic molecular markers: Linking PAH with BPCA analysis. Chemosphere 2015, 119, 432-437.
    • 55. International Biochar Initiative (IBI), Standardized product definition and product testing guidelines for biochar that is used in soil, in: IBI-STD-01, 2012 May,_http://www.biocharinternational.org/characterizationstandard_. Version 1.(accessed on 17th March, 2014).
    • 56. EBC, European Biochar Certificate-Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), Arbaz, Switzerland, 2012, Version4.8 of 13th December.
    • 57. Zimmerman A.R.; Gao B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169-1179.
    • 58. Rumpel, C.; Chaplot, V.; Planchon, O.; Bernadou, J.; Valentin, C.; Mariotti, A. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 2006, 65, 30-40.
    • 59. Schmidt, H.-P.; Kammann, C.; Niggli, C.; Evangelou, M.W.H.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil:Influences on plant growth, nutrient uptake, plant health and grape quality. Agr. Ecosyst. Environ. 2014, 191, 117-123.
    • 60. Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, D.A.C. et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49-56.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Establishing hydropyrolysi...

Cite this article