LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Do, Hainam; Besley, Nicholas A. (2013)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:
The basin hopping search algorithm in conjunction with second-order Moller-Plesset perturbation theory is used to determine the lowest energy structures of the radical cation clusters (NH_3)_n^+, (H_2O)_n^+, (HF)_n^+, (PH_3)_n^+, (H_2S)_n^+ and (HCl)_n^+, where n=2-4. The energies of the most stable structures are subsequently evaluated using coupled cluster theory in conjunction with the aug-cc-pVTZ basis set. These cationic clusters can adopt two distinct structural types, with some clusters showing an unusual type of bonding, often referred to as hemibonding, while other clusters undergo proton transfer to give an ion and radical. It is found that proton transfer based structures are preferred by the (NH_3)_n+, (H_2O)_n^+, and (HF)_n^+ clusters while hemibonded structures are favoured by (PH_3)_n^+, (H_2S)_n^+ and (HCl)_n^+. These trends can be attributed to the relative strengths of the molecules and molecular cations as Brønsted bases and acids, respectively, and the strength of the interaction between the ion and radical in the ion-radical clusters.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 25 M.-K. Tsai, J.-L. Kuo and J.-M. Lu, Phys. Chem. Chem. Phys., 2012, 14, 13402- 13408.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok