Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Khodachenko, M. L.; Arber, T. D.; Rucker, H. O. (Helmut O.); Hanslmeier, Arnold (2004)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Astrophysics::Solar and Stellar Astrophysics, Physics::Plasma Physics, Astrophysics::Earth and Planetary Astrophysics
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation(resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromosphere and prominences enhances the efficiency of both these energy dissipation mechanisms.\ud A comparative study of the efficiency of MHD wave damping in solar plasmas due to collisional and viscous energy dissipation mechanisms is presented here. The damping rates are taken from Braginskii 1965 and applied to the VAL C model of the quiet Sun (Vernazza et al. 1981). These estimations show which of the mechanisms are dominant in which regions. In general the correct description of MHD wave damping requires the consideration of all energy dissipation mechanisms via the inclusion of the appropriate terms in the generalized Ohm’s law, the momentum, energy and induction equations. Specific forms of the generalized Ohm’s Law and induction equation are presented that are suitable for regions of the solar atmosphere which are\ud partially ionised.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Antiochos, S. K., MacNeice, P. J., Spicer, D. S., & Klimchuk, J. A. 1999, ApJ, 512, 985
    • Aschwanden, M. J., Newmark, J. S., Delaboudiniere, J.-P., et al. 1999a, ApJ, 515, 842
    • Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999b, ApJ, 520, 880
    • Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ, 541, 1059
    • Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036
    • Bakhareva, N. M., Khodachenko, M. L., & Zaitsev, V. V. 1992, Sol. Phys., 139, 299
    • Braginskii, S. I. 1965, Transport processes in a plasma, in Reviews of plasma physics (New York: Consultants Bureau), 1
    • Cowling, T. G., Magnetohydrodynamics (New York: Interscience), 1957
    • DePontieu, B., & Haerendel, G. 1998, A&A, 338, 729
    • DePontieu, B., Martens, P. C. H., & Hudson, H. S. 2001, ApJ, 558, 859
    • Frank-Kamenetskii, D. A. 1961, Sov. Phys. Techn. Phys., 5, 842
    • Goodman, M. L. 2000, ApJ, 533, 501
    • Goodman, M. L. 2001, Space Sci. Rev., 95, 79
    • Gordon, B. E., & Hollweg, J. V. 1983, ApJ, 226, 373
    • Haerendel, G. 1992, Nature, 360, 241
    • Hollweg, J. V. 1986, JGR, 91, 4111
    • Hollweg, J. V., in Mechanisms of Chromospheric and Coronal Heating, ed. P. Ulmschneider, E. R. Priest, & R. Rosner (Berlin: Springer), 423, 1991
    • James, S. P., & Erde´lyi, R. 2002, A&A, 393, L11
    • James, S. P., Erde´lyi, R., & De Pontieu, B. 2003, A&A, 406, 715
    • Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A., & MacNeice, P. J. 2001, ApJ, 553, L85
    • Khodachenko, M. L. 1996, Astron. Rep., 40, 273
    • Khodachenko, M. L., & Zaitsev, V. V. 1992, Sov. Astron., 36, 81
    • Khodachenko, M. L., & Zaitsev, V. V. 2002, Ap&SS, 279, 389
    • Landau, L. D., & Lifshits, E. M. 1987, Fluid Mechanics (Oxford: Pergamon Press)
    • Nakariakov, V. M., Ofman, L, DeLuca, E., Roberts, B., & Davila, J. M. 1999, Science, 285, 862
    • Nakariakov, V. M., Verwichte, E., Berghmans, D., & Robbrecht, E. 2000, A&A, 362, 1151
    • Narain, U., & Ulmschneider, P., 1996, Space Sci. Rev., 75, 453
    • Ofman, L. 2002, ApJ, 568, L135.
    • Osterbrock, D. 1961, ApJ, 143, 347
    • Piddington, J. H. 1954, MNRAS, 114, 638
    • Piddington, J. H. 1956, MNRAS, 116, 314
    • Priest, E. R., Foley, C. R., Heyvaerts, J., et al. 1998, Nature, 393, 545
    • Spadaro, D., Lanza, A. F., Lanzafame, A. C., et al. 2003, ApJ, 582, 486
    • Spitzer, L. 1962, Physics of fully ionized gases (New York: Interscience)
    • Tsiklauri, D., & Nakariakov, V. M. 2001, A&A, 379, 1106
    • Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635
    • Zaitsev, V. V., & Stepanov, A. V. 1992, Sol. Phys., 139, 343
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article