OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Vacheret, Antonin; Barker, Gary John; Dziewiecki, Michal; Guzowski, P.; Haigh, Martin David; Hartfiel, B.; Izmaylov, Alexander; Johnston, W.; Khabibullin, Marat M.; Khotjantsev, Alexei; Kudenko, Yury; Kurjata, Robert; Kutter, T.; Lindner, Thomas; Masliah, Patrick; Marzec, Janusz; Mineev, Oleg; Musienko, Yuri; Oser, S.; Retiere, Fabrice; Salih, R. O.; Shaikhiev, A.; Thompson, Lee; Ward, Mike A.; Wilson, Robert J.; Yershov, Nikolai; Zaremba, Krzysztof; Ziembicki, Marcin (2011)
Publisher: Elsevier BV
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Languages: English
Types: Article
Subjects: Physics - Instrumentation and Detectors, QC, TK, High Energy Physics - Experiment

Classified by OpenAIRE into

arxiv: Physics::Instrumentation and Detectors
The calorimeter, range detector and active target elements of the T2K near detectors rely on the Hamamatsu Photonics Multi-Pixel Photon Counters (MPPCs) to detect scintillation light produced by charged particles. Detailed measurements of the MPPC gain, afterpulsing, crosstalk, dark noise, and photon detection efficiency for low light levels are reported. In order to account for the impact of the MPPC behavior on T2K physics observables, a simulation program has been developed based on these measurements. The simulation is used to predict the energy resolution of the detector.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Y. Itow, et al., hep-ex/0106019.
    • [2] ''T2K ND280 Conceptual Design Report'', T2K Internal Document, See also D. Karlen, Nucl. Phys. B (Proc. Suppl.) 159 (2006) 91; Yu. Kudenko, Nucl. Instr. and Meth. A 598 (2009) 289; arXiv:0805.0411 [physics.ins-det].
    • [3] G. Bondarenko, et al., Nucl. Instr. and Meth. A 442 (2000) 187.
    • [4] B. Dolgoshein, et al., Nucl. Instr. and Meth. A 563 (2006) 368.
    • [5] V. Golovin, V. Saveliev, Nucl. Instr. and Meth. A 518 (2004) 560.
    • [6] D. Renker, Nucl. Instr. and Meth. A 567 (2006) 48.
    • [7] D. Renker, E. Lorenz, J. Instr. 4 (2009) P04004.
    • [8] Z.Ya. Sadygov, et al., Nucl. Instr. and Meth. A 504 (2003) 301.
    • [9] ''MPPC specifications'': /http://sales.hamamatsu.com/assets/pdf/catsand guides/mppc_kapd0002e07.pdfS.
    • [10] M. Yokoyama, et al., Nucl. Instr. and Meth. A 610 (2009) 128 arXiv:0807.3145 [physics.ins-det].
    • [11] F. Retiere, et al., Nucl. Instr. and Meth. A 610 (2009) 378.
    • [12] P. Eckert, H.-C. Schultz-Coulon, W. Shen, R. Stamen, A. Tadday, Nucl. Instr. and Meth. A 620 (2010) 217.
    • [13] M. Yokoyama, et al., Nucl. Instr. and Meth. A 622 (2010) 567 arXiv:1007.2712 [physics.ins-det].
    • [14] K. Yamamoto, et al., PoS PD07 (2007) 004.
    • [15] F. Corsi, et al., Nucl. Instr. and Meth. A 572 (2007) 416.
    • [16] M. Dziewiecki, R. Kurjata, J. Marzec, R. Sulej, K. Zaremba, M. Ziembicki, PoS PD09 (2009) 016.
    • [17] J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, L. Jensen, IEEE Trans. Microwave Theory Tech. 54 (2006) 3995.
    • [18] Y. Du, F. Retiere, Nucl. Instr. and Meth. A 596 (2008) 396.
    • [19] S. Cova, A. Lacaita, G. Ripamonti, IEEE Electron. Devices Lett. ED-12 (1991) 685.
    • [20] A. Spinelli, A.L. Lacaita, IEEE Trans. Electron. Devices ED-44 (1997) 1931.
    • [21] A.L. Lacaita, et al., IEEE Trans. Electron. Devices ED-40 (3) (1993) 577.
    • [22] R. Mirzoyan, et al., Nucl. Instr. and Meth. A 610 (2009) 98.
    • [23] NanoLED, Jobin Yvon Ltd., 2 Dalston Gardens, Stanmore, Middlesex HA7 1BQ, UK.
    • [24] K. Deiters, et al., Nucl. Instr. and Meth. A 442 (2000) 193.
    • [25] D. Orme, et al., PoS PD09 (2009) 019.
    • [26] Y. Musienko, et al., Nucl. Instr. and Meth. A 567 (2006) 57.
    • [27] P. Amram, et al., Nucl. Instr. and Meth. A 484 (2002) 369.
    • [28] M.A. Ward, A. Vacheret, Nucl. Instr. and Meth. A 610 (2009) 378.
    • [29] S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, C. Sitarsky, IEEE Trans. Nucl. Sci. NS-58 (2011).
    • [30] H.T. van Dam, S. Seifert, R. Vinke, P. Dendooven, H. Lo¬® hner, F.J. Beekman, D.R. Schaart, IEEE Trans. Nucl. Sci. NS-57 (2010) 2254.
    • [31] J. Estrada, C. Garcia, B. Hoenison, P. Rubinov, ''MCM II and the Trip chip'', D0 note 4009, Fermilab-TM-2226, 2003.
    • [32] A. Karar, Y. Musienko, J.Ch. Vanel, Nucl. Instr. and Meth. A 428 (1999) 413.
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok