LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QA
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn\ud equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived\ud in a formulation involving Lagrange multipliers for local and non-local constraints. Local Convergence is shown by interpreting the primal-dual active set approach as\ud a semi-smooth Newton method. Properties of the method are discussed and several numerical simulations in two and three space dimensions demonstrate its efficiency.\ud \ud In the second part of the thesis various applications of the Allen-Cahn equation are discussed. The non-local Allen-Cahn equation can be coupled with an elasticity\ud equation to solve problems in structural topology optimisation. The model can be extended to handle multiple structures by using the vector-valued Allen-Cahn\ud variational inequality with non-local constraints. Since many applications of the Allen-Cahn equation involve evolution of interfaces in materials an important extension of the standard Allen-Cahn model is to allow materials to exhibit anisotropic behaviour. We introduce an anisotropic version of the Allen-Cahn variational inequality and we show that it is possible to apply the primal-dual active set strategy efficiently to this model. Finally, the Allen-Cahn model is applied to problems in image processing, such as segmentation, denoising and inpainting.\ud \ud The primal-dual active set method proves exible and reliable for all the applications considered in this thesis.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 2 Allen-Cahn variational inequality with non-local constraints 7 2.1 Formulation as a complementarity problem . . . . . . . . . . . . . . . 7 2.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Primal-dual active set (PDAS) method . . . . . . . . . . . . . . . . . 15 2.4 Finite element discretisation . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.2 Finite element approximation and the PDAS-algorithm . . . . 19 2.5 Convergence as a semi-smooth Newton method . . . . . . . . . . . . 20 2.6 Numerical tests and discussion . . . . . . . . . . . . . . . . . . . . . . 24 2.6.1 Comparison with analytically known solutions . . . . . . . . . 25 2.6.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . 30
    • 3 Vector-valued Allen-Cahn variational inequality with non-local constraints 33 3.1 Formulation as a complementarity problem . . . . . . . . . . . . . . . 35 3.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Discretisation and primal-dual active set method . . . . . . . . . . . . 46 3.4 Convergence as a semi-smooth Newton method . . . . . . . . . . . . 49 3.5 Numerical tests and discussion . . . . . . . . . . . . . . . . . . . . . . 52 3.5.1 Comparison with analytically known solutions . . . . . . . . . 53 3.5.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 58
    • 4 Strategies for solving the linear systems 64 4.1 Non-local Allen-Cahn variational inequality . . . . . . . . . . . . . . 64 4.2 Non-local vector-valued Allen-Cahn variational inequality . . . . . . . 72
    • [1] Adams, M., Brezina, M., Hu, J., and Tuminaro, R. Parallel multigrid smoothing: polynomial versus Gauss-Seidel. J. Comp. Phys. 188 (2003), 593{ 610.
    • [2] Allaire, G. Optimization by the Homogenization Method. Springer, 2002.
    • [3] Allaire, G., Jouve, F., and Toader, A.-M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004), 363{393.
    • [5] Aujol, J.-F., and Kang, S. Color image decomposition and restoration. J. Vis. Commun. Image Represent. 17, 4 (2006), 916{928.
    • [6] Ayra, S., Malamatos, T., and Mount, D. M. Space-e cient approximate Voronoi diagrams. Proc. 34th ACM Symp. on Theory of Computing (2002), 732{730.
    • [7] Barrett, J. W., and Blowey, J. F. An error bound for the nite element approximation of a model for phase seperation of a multi-component alloy. IMA J. Num. Analysis 16 (1996), 257{287.
    • [8] Barrett, J. W., and Blowey, J. F. Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Num. Math. 77 (1997), 11{34.
    • [9] Barrett, J. W., Nurnberg, R., and Styles, V. Finite element approximation of a phase eld model for void electromigration. SIAM J. Num. Analysis 42 (2004), 738{772.
    • [10] Bellettini, G., and Paolini, M. Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996), 537{566.
    • [11] Bellettini, G., Paolini, M., and Verdi, C. -convergence of discrete approximations to interfaces with prescribed mean curvature. Rend. Atti. Naz. Linci. (1990).
    • [12] Benes, M., Chalupecky, V., and Mikula, K. Geometrical image segmentation by the Allen-Cahn equation. Appl. Num. Math. 51 (2004), 187{205.
    • [13] Bensoe, M., and Sigmund, O. Topology Optimization. Springer, 2003.
    • [14] Benzi, M., Golub, G. H., and Liesen, J. Numerical solution of saddle point problems. Acta Numer. 14 (2005), 1{137.
    • [15] Bergounioux, M., Ito, K., and Kunisch, K. Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37, 4 (1999), 1176{1194.
    • [16] Bergounioux, M., and Kunisch, K. Primal-dual active set strategy for state constrained optimal control problems. Comput. Optim. Appl. 22, 2 (2002), 193{224.
    • [17] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. Image inpainting. In Siggraph 2000, Computer Graphics Proceedings (2000), ACM Press/Addison Wesley Longman, pp. 417{424.
    • [18] Bertozzi, A., Esedoglu, S., and Gillette, A. Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Proc. 16, 1 (2007), 285{291.
    • [19] Blank, L., Butz, M., and Garcke, H. Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method. Preprint SPP1253-09- 02, to appear in ESAIM: COCV.
    • [20] Blank, L., Garcke, H., Sarbu, L., Srisupattarawanit, T., Styles, V., and Voigt, A. Phase- eld approaches to structural topology optimization. To be pubished in: Ho mann, K. H., and Leugering, G. (Eds): Optimization with Partial Di erential Equations, Birkhauser, 2010.
    • [21] Blank, L., Garcke, H., Sarbu, L., and Styles, V. Primal-dual active set methods for Allen-Cahn variational inequalities with non-local constraints. Submitted, Preprint SPP1253-09-01.
    • [22] Blank, L., Sarbu, L., and Stoll, M. Preconditioning for AllenCahn variational inequalities with non-local constraints. Submitted, Preprint 11/2010, University of Regensburg.
    • [23] Blowey, J. F., and Elliott, C. M. The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. I: Mathematical analysis. European J. Appl. Math. 2, 3 (1991), 233{280.
    • [24] Blowey, J. F., and Elliott, C. M. The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. II: Numerical analysis. European J. Appl. Math. 3 (1992), 147{179.
    • [25] Blowey, J. F., and Elliott, C. M. Curvature dependent phase boundary motion and parabolic double obstacle problems. IMA Vol. Math. Appl. 47 (1993), 19{60.
    • [26] Braess, D. Finite Elemente, 3 ed. Springer, 2003.
    • [27] Brandt, A., McCormick, S., and Ruge, J. Sparsity and its applications. Cambridge University Press, 1984, ch. Algebraic multigrid (AMG) for sparse matrix equations.
    • [28] Bronsard, L., and Reitich, F. On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rat. Mech. Anal. 124 (1993), 355{379.
    • [29] Burger, M., He, L., and Schonlieb, C.-B. Cahn-Hilliard inpainting and a generalization for grayvalue images. SIAM J. Imaging Sci. 2, 4 (2009), 1129{1167.
    • [30] Burger, M., and Stainko, R. Phase- eld relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006), 1447{1466.
    • [31] Caginalp, G., and Socolovsky, E. Phase eld computations of singleneedle crystals, crystal growth, and motion by mean curvature. SIAM J. Scienti c Comp. 15 (1994), 106{126.
    • [32] Cao, F. Geometric Curve Evolution and Image Processing. No. 1805 in Lecture Notes in Mathematics. Springer, 2003.
    • [33] Chan, T., and Shen, J. Mathematical models for local non-texture inpaintings. SIAM J. Appl. Math. 62, 3 (2001), 1019{1043.
    • [34] Chan, T., and Shen, J. Non-texture inpainting by curvature driven di usions (CDD). J. Visual Comm. Image Rep. 12, 4 (2001), 436{449.
    • [35] Chan, T., and Shen, J. Variational restoration of non- at image features: models and algorithms. SIAM J. Appl. Math. 61, 4 (2001), 1338{1361.
    • [36] Chan, T., and Vese, L. Image segmentation using level sets and the piecewise-constant Mumford-Shah model. Tech. rep., 00-14, UCLA, 2000.
    • [37] Chan, T., and Vese, L. Active contours without edges. IEEE Trans. Image Process. 10, 2 (2001), 266{277.
    • [38] Chan, T. F., Kang, S. H., and Shen, J. Euler's elastica and curvaturebased inpainting. SIAM J. Appl. Math. 63, 2 (2002), 564{592.
    • [39] Chen, X., Elliott, C. M., Gardiner, A. R., and Zhao, J. J. Convergence of numerical solutions to the Allen-Cahn equation. Applicable Analysis 69 (1998), 47{56.
    • [40] Chen, X., Nashed, Z., and Qi, L. Smoothing methods and semismooth methods for nondi erentiable operator equations. SIAM J. Numer. Anal. 38, 4 (2001), 1200{1216.
    • [50] Elliott, C. M., and Styles, V. Computations of bi-directional grain boundary dynamics in thin lms. J. Comput. Phys. 187 (2003), 524{543.
    • [62] Garcke, H., and Weikard, U. Numerical approximation of the CahnLarche equation. Numer. Math. 100 (2005), 639{662.
    • [63] Gee, M., Siefert, C., Hu, J., Tuminaro, R., and Sala, M. ML 5.0 smoothed aggregation user's guide. Tech. Rep. SAND2006-2649, Sandia National Laboratories, 2006.
    • [64] Golub, G. H., and Meurant, G. Matrices, moments and quadrature. In Numerical analysis 1993 (Dundee, 1993), D. F. Gri ths and G. A. Watson, Eds. Longman Sci. Tech.
    • [65] Graser, C. Globalization of nonsmooth Newton methods for optimal control problems. In Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2007 (2008), K. Kunisch, G. Of, and O. Steinbach, Eds., Springer, pp. 605{612.
    • [66] Graser, C., and Kornhuber, R. Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009), 1{44.
    • [67] Graser, C., and Kornhuber, R. Nonsmooth Newton methods for setvalued saddle point problems. SIAM J. Numer. Anal. 47, 2 (2009), 1251{1273.
    • [68] Grisvard, P. Elliptic problems in nonsmooth domains. Pitman, 1985.
    • [74] Hruska, C., Leykekhman, D., Pinzon, D., Shay, B., and Foisy, J. The shortest enclosure of two connected regions in a corner. Rocky Mountain J. Math. 31, 1 (2001), 437{482.
    • [75] Hutchings, M., Morgan, F., Ritore, M., and Ros, A. Proof of the double bubble conjecture. Annals of Math. 155, 2 (2002), 459{489.
    • [76] Ito, K., and Kunisch, K. Semi-smooth Newton methods for variational inequalities of the rst kind. M2AN Math. Model. Numer. Anal. 37, 1 (2003), 41{62.
    • [77] Kay, D., and Tomasi, A. Colour image segmentation by the vector-valued Allen-Cahn phase- eld model: a multigrid solution. IEEE Trans. Image Proc. 18 (2007), 2330{2339.
    • [112] Taylor, J., and Cahn, J. Linking anisotropic sharp and di use surface motion laws via gradient ows. J. Statist. Phys. 77, 1-2 (1994), 183{197.
    • [114] Tsai, A., Yezzi, A., and Willsky, A. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation and magni cation. IEEE Trans. Image Proc. 10, 8 (2001), 1169{1186.
    • [115] Von Neumann, J. Metal interfaces. In American Society for Metals (1952), Cleveland, pp. 108{110.
    • [116] Wang, M., and Zhou, S. Phase eld: A variational method for structural topology optimization. Comput. Model. Eng. Sci. 6 (2004), 547{566.
    • [117] Wheeler, A. A., and McFadden, G. A -vector formulation of anisotropic phase- eld models: 3-D asymptotics. European J. Appl. Math. 7 (1996), 367{ 381.
    • [118] Wilson, R. J. Introduction to Graph Theory. Pearson Education Ltd, 1996.
    • [119] Young, T. An essay on the cohesion of uids. Phil. Trans. R. Soc. Lond. 95 (1805), 65{87.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article