LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: AMERICAN CHEMICAL SOCIETY
Languages: English
Types: Article
Subjects: Q, QD
Identifiers:doi:10.1021/ma048449q
The synthesis of poly(n-hexylmethylsilane) in crude yields from 50 to 83% and poly(di-n-hexylsilane) in crude yields from 67 to 82%, was accomplished by performing Wurtz-type reductive-coupling polymerizations of the corresponding dicholorodiorganosilanes in THF at room temperature. After purification, both polymers were obtained in isolated yields of greater than 50%, which are the highest achieved for such polysilanes to date. The general applicability of the synthetic procedure was also demonstrated by syntheses of poly(methyl-n-octylsilane) and poly(methyl-n-propylsilane) in good yields. The results indicate that the reductive coupling of dichlorodiorganosilanes in THF at room temperature offers not only greatly improved polymer yields but also provides a general route to polydiorganosilanes that is a considerable improvement on Wurtz-type syntheses carried out in toluene at 110 degreesC.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Jones, R. G.; Holder, S. J. In Silicon-based Polymers: The Science and Technology of their Synthesis and Applications; Jones, R. G., Ando, W., Chojnowski, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp 353-373.
    • (2) (a) Mazjyasni, K. S.; West, R.; David, L. D. J. Am. Ceram. Soc. 1978, 61, 504. (b) Trujillo, R. E. J. Organomet. Chem. 1980, 198, C27-C28. (c). Wesson, J. P.; Williams, T. C. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 959. (d) West, R.; David, L. D.; Djurovich, P. I.; Stearley, K. L.; Srinivasan, K. S. V.; Yu, H. J. Am. Chem. Soc. 1981, 103, 7352-7354. (e) Trefonas, P. T., III; Djurovich, P. I.; Zhang, X.-H.; West, R.; Miller, R. D.; Hofer, D. J. Polym. Sci. Polym. Lett. Ed. 1983, 21, 819-822.
    • (3) (a) Ziegler, J. M. Polym. Prepr. 1986, 27, 109. (b) Zeigler, J. M. Mol. Cryst. Liq. Cryst. 1990, 190, 265.
    • (4) Gauthier, S.; Worsfold, D. Macromolecules 1989, 22, 2213- 2218.
    • (5) (a) Matyjaszewski, K. Polym. Prepr. 1987, 28, 224. (b) Matyjaszewski, K.; Greszta, D., Hrkach, J. S.; Kim, H. K. Macromolecules 1995, 28, 59-72.
    • (6) Jones, R. G.; Wong, W. K. C.; Holder, S. J. Organometallics 1998, 17, 59-64.
    • (7) McLeish, T. C. B.; Jones R. G.; Holder, S. J. Macromolecules 2002, 35, 548-554.
    • (8) (a) Jones, R. G.; Budnik U.; Holder, S. J.; Wong, W. K. C. Macromolecules 1996, 29, 8036-8046. (b) Miller, R. D.; Thompson D.; Sooriyakumaran, R.; Fickes, G. N. J. Polym. Sci.: Part A: Polym. Chem. 1991, 29, 813-824. (c) Miller, R. D.; Ginsberg, E. J.; Thompson, D. Polym. J. 1993, 25, 807- 823.
    • (9) Bratton, D.; Holder, S. J.; Jones, R. G.; Wong, W. K. C. J. Organomet. Chem. 2003, 685, 60-64.
    • (10) (a) Benfield, R. E.; Cragg R. H.; Jones, R. G.; Swain, A. C. Nature 1991, 353, 340-341. (b) Jones, R. G.; Benfield, R. E.; Cragg, R. H.; Swain, A. C.; Webb, S. J. Macromolecules 1993, 26, 4878-4887.
    • (11) For example, see: (a) Yuan, C. H.; West, R. Macromolecules 1994, 27, 629-630. (b) Karikari, E. K.; Greso, A. J.; Farmer B. L.; Miller, R. D.; Rabolt, J. F. Macromolecules 1993, 26, 3937-3945. (c) Sanji, T.; Sakamoto, K.; Sakurai, H.; Ono, K. Macromolecules 1999, 32, 3788-3794. (d) Bukalov, S. S.; Leites, L. A.; West, R. Macromolecules 2001, 34, 6003-6004. (e) Sato, T.; Nagayama, N.; Yokoyama, M. J. Mater. Chem. 2004, 14, 287-289. (f) Fujino, M.; Isaka, H. J. Chem. Soc., Chem. Commun. 1989, 466-467.
    • (12) (a) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410. (b) Rabolt J. F.; Hoffer, D.; Miller, R. D. Macromolecules 1986, 19, 611-616. (c) West, R. J Organomet. Chem. 1986, 300, 327-346. (d) Miller, R. D.; Jenkner, P. K. Macromolecules 1994, 27, 5921-5923. (e) Fujino, M.; Isaka, H. J. Chem. Soc., Chem. Commun. 1989, 466-467.
    • (13) Worsfold, D. J. In Inorganic and Organometallic Polymers; ACS Symp. Ser. 360; Zeldin, M., Wynne, K. J., Allcock, H. R., Eds.; American Chemical Society, Washington, DC, 1988; pp101-111.
    • (14) R West, private communication.
    • (15) To date, we have been unable to find any reported data on the synthesis of poly(methyl-n-octylsilane) in the literature.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article