Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Wiley Open Access
Journal: Plant Biotechnology Journal
Languages: English
Types: Article
Subjects: /dk/atira/pure/publication/pubmedpublicationtype/D016428, wild relatives, genotyping, Research Articles, Introgression, Wheat, Journal Article, Research Article, synteny

Classified by OpenAIRE into

mesheuropmc: food and beverages
Despite some notable successes, only a fraction of the genetic variation available in wild relatives has been utilized to produce superior wheat varieties. This is as a direct result of the lack of availability of suitable high-throughput technologies to detect wheat/wild relative introgressions when they occur. Here, we report on the use of a new SNP array to detect wheat/wild relative introgressions in backcross progenies derived from interspecific hexaploid wheat/Ambylopyrum muticum F1 hybrids. The array enabled the detection and characterization of 218 genomewide wheat/Am. muticum introgressions, that is a significant step change in the generation and detection of introgressions compared to previous work in the field. Furthermore, the frequency of introgressions detected was sufficiently high to enable the construction of seven linkage groups of the Am. muticum genome, thus enabling the syntenic relationship between the wild relative and hexaploid wheat to be determined. The importance of the genetic variation from Am. muticum introduced into wheat for the development of superior varieties is discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S. and Moore, G. (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann. Bot. 101, 863-872.
    • Bennett, M.D., Dover, G.A. and Riley, R. (1974) Meiotic duration in wheat genotypes with or without homoeologous meiotic chromosome pairing. Proc. R. Soc. Lond. B, 187, 191-207.
    • van Berloo, R. (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J. Hered. 99, 232-236.
    • Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F.-X. and Huard, F. (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 119, 201-212.
    • Charmet, G. (2011) Wheat domestication: lessons for the future. C. R. Biol. 334, 212-220.
    • Chen, P.D., Tsujimoto, H. and Gill, B.S. (1994) Transfer of PhI genes promoting homoeologous recombination from Triticum speltoides to common wheat. Theor. Appl. Genet. 88, 97-101.
    • Cox, T.S. (1997) Deepening the wheat gene pool. J. Crop Prod. 1, 1-25.
    • Dover, G.A. and Riley, R. (1972) Variation at two loci affecting homoeologous meiotic pairing in Triticum aestivum x Aegilops mutica hybrids. Nature New Biol. 235, 61-62.
    • Dvorak, J. (1972) Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can. J. Genet. Cytol. 14, 371-380.
    • Dvorak, J. and Zhang, H.B. (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl Acad. Sci. USA, 87, 9640-9644.
    • Dvorak, J., di Terlizzi, P., Zhang, H.B. and Resta, P. (1993) The evolution of polyploid wheats - Identification of the A-genome donor species. Genome, 36, 21-31.
    • Eser, V. (1998) Characterisation of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. mutica. Euphytica, 100, 269-272.
    • Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A. and Gill, B.S. (1996) Characterization of wheat-alien translocations conferring resistance to disease and pests: current status. Euphytica, 91, 59-87.
    • Garcia-Olmedo, F., Delibes, A. and Sanchez-Monge, R. (1977) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. Proceedings of the 8th Congress of Eucarpia 91-97.
    • Griffiths, S., Sharpe, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. et al. (2006) Molecular characterization of PH1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749-752.
    • Haldane, J.B.S. (1919) The probable errors of calculated linkage values, and the most accurate method of determining gametic from certain zygotic series. J. Hered. 8, 291-297.
    • Iefimenko, T.S., Antonyuk, M.Z. and Martynenko, V.S. (2013) Development of alien-substitution and alien-addition Triticum aestivum/Aegilops mutica lines. In Factors of Experimental Evolution of Organisms: Collected Scientific Papers, pp. 114-118. Kyiv: Logos.
    • Iefimenko, T.S., Fedak, Y.G., Antonyuk, M.Z. and Ternovska, T.K. (2015) Microsatellite analysis of chromosomes from the fifth homoeologous group in the introgressive Triticum aestivum/Amblyopyrum muticum wheat lines. Cytol. Genet. 49, 183-191.
    • Jauhar, P.P. and Chibbar, R.N. (1999) Chromosome-mediated direct gene transfers in wheat. Genome, 42, 570-583.
    • Kato, A., Lamb, J.C. and Birchler, J.A. (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci. USA, 101, 13554-13559.
    • King, I.P., Purdie, K.A., Liu, C.J., Reader, S.M., Pittaway, T.S., Orford, S.E. and Miller, T.E. (1994) Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome, 37, 882-887.
    • King, J., Armstead, I., Harper, J., Ramsey, L., Snape, J., Waugh, R., James, C. et al. (2013) Exploitation of interspecific diversity for monocot crop improvement. Heredity, 110, 475-483.
    • King, J., Gustafson, P., Allen, A. and King, I.P. (2016) Exploitation of interspecific diversity in wheat. In World Wheat Book, Vol. 3 (Bonjean, A., van Ginkel, M. and Angus, B., eds), pp. 1125-1139. Paris: Lavoisier ch. 4.
    • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J. et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645.
    • Liu, C.J., Devos, K.M., Chinoy, C.N., Atkinson, M.D. and Gale, M.D. (1992) Non-homoeologous translocations between group 4, 5 and 7 chromosomes in wheat and rye. Theor. Appl. Genet. 83, 305-312.
    • McFadden, E. and Sears, E.R. (1946) The origin of Triticum spelta and its freethreshing hexaploid relatives. J. Hered. 37, 81-107.
    • Milne, I., Shaw, P., Stephen, G., Bayer, M., Cardle, L., Thomas, W.T.B., Flavell, A.J. et al. (2010) Flapjack - graphical genotype visualisation. Bioinformatics, 26, 3133-3134.
    • Naranjo, T., Roca, A., Goicoecha, P.G. and Giraldz, R. (1987) Arm homoeology of wheat and rye chromosomes. Genome, 29, 873-882.
    • van Ooijen, J.W. (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res. 93, 343-349.
    • Qi, L., Friebe, B., Zhang, P. and Gill, B.S. (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15, 3-19.
    • Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A. (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8, e66428.
    • Riley, R. and Chapman, V. (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182, 713-715.
    • Schneider, A., Molnar, I. and Molnar-Lang, M. (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163, 1-19.
    • Sears, E.R. (1955) An induced gene transfer from Aegilops to Triticum. Genetics, 40, 595.
    • Sears, E.R. (1972) Agropyron-wheat transfers through induced homoeologous pairing. Can. J. Genet. Cytol. 14, 736.
    • Sears, E.R. (1976) Genetic control of chromosome-pairing in wheat. Annu. Rev. Genet. 10, 31-51.
    • Sears, E.R. (1977) An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 4, 585-593.
    • Sears, E.R. and Okamoto, M. (1958) Intergenomic chromsome relationships in hexaploid wheat. In proceedings of the Xth International Congress on Genetics, Vol. 2: August 20-27, 1958, (Sewall, Wright, ed). McGill University, Montreal: University of Toronto Press. pp. 258-259.
    • The International Wheat Genome Sequencing Consortium. (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788-1-1251788-11.
    • Tiwari, V.K., Wang, S., Sehgal, S., Vrana, J., Friebe, B., Kubalakova, M., Chhuneja, P. et al. (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genom. 15, 273.
    • Tiwari, V.K., Wang, S., Danilova, T., Koo, D.H., Vrana, J., Kubalakova, M., Hribova, E. et al. (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromsome 5Mg of Aegilops geniculata. Plant J. 84, 733-746.
    • Voorrips, R.E. (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77-78.
    • Wendler, N., Mascher, M., Noh, C., Himmelbach, A., Scholz, U., Ruge-Wehling, B. and Stein, N. (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122-1131.
    • Wendler, N., Mascher, M., Himmelbach, A., Johnston, P., Pickering, R. and Stein, N. (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/ bulbosum introgressions for breeding and beyond. Mol. Plant, 8, 1507-1519.
    • Wilkinson, P.A., Winfield, M.O., Barker, G.L.A., Allen, A.M., Burridge, A., Coghill, J.A. and Edwards, K.J. (2012) CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinform. 13, 219.
    • Winfield, M.O., Allen, A.M., Burridge, A.J., Barker, G.L.A., Benbow, H.R., Wilkinson, P.A., Coghill, J. et al. (2015) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 13, 733-742.
    • Zhang, H., Bian, Y., Gou, X., Zhu, B., Xu, C., Qi, B., Li, N. et al. (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc. Natl Acad. Sci. USA, 110, 3447-3452.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.