Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhao, Benzhong; MacMinn, Christopher W.; Szulczewski, Michael L.; Neufeld, Jerome A.; Huppert, Herbert E.; Juanes, Ruben
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: sub-99
We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface gravity-current model that incorporates capillarity and quantitatively explains the experimental observations, including the x∼t1/2 spreading behavior at intermediate times and the fact that capillarity stops a finite-release current. Our theory and experiments suggest that capillary pinning is potentially an important, yet unexplored, trapping mechanism during CO2 sequestration in deep saline aquifers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] R. M. Iverson, Rev. Geophys. 35, 245 (1997).
    • [2] J. Bear, Dynamics of Fluids in Porous Media (Elsevier, New York, 1972) .
    • [3] A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).
    • [4] J. M. Nordbotten, M. A. Celia, and S. Bachu, J. Fluid Mech. 561, 307 (2006).
    • [5] M. Bickle, A. Chadwick, H. E. Huppert, M. Hallworth, and S. Lyle, Earth Planet. Sci. Lett. 255, 164 (2007).
    • [6] M. A. Hesse, F. M. Orr, Jr., and H. A. Tchelepi, J. Fluid Mech. 611, 35 (2008).
    • [7] R. Juanes, C. W. MacMinn, and M. L. Szulczewski, Transp. Porous Media 82, 19 (2010).
    • [8] S. E. Gasda, J. M. Nordbotten, and M. A. Celia, Water Resour. Res. 47, W05528 (2011).
    • [9] C. W. MacMinn, M. L. Szulczewski, and R. Juanes, J. Fluid Mech. 688, 321 (2011).
    • [10] M. L. Szulczewski, C. W. MacMinn, H. J. Herzog, and R. Juanes, Proc. Natl. Acad. Sci. USA 109, 5185 (2012).
    • [11] H. E. Huppert and A. W. Woods, J. Fluid Mech. 292, 55 (1995).
    • [12] M. A. Hesse, H. A. Tchelepi, B. J. Cantwell, and F. M. Orr, Jr., J. Fluid Mech. 577, 363 (2007).
    • [13] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996).
    • [14] P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
    • [15] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).
    • [16] R. Lenormand, C. Zarcone, and A. Sarr, J. Fluid Mech. 135, 123 (1983).
    • [17] M. Cieplak and M. O. Robbins, Phys. Rev. B 41, 11508 (1990).
    • [18] N. Martys, M. Cieplak, and M. O. Robbins, Phys. Rev. Lett. 66, 1058 (1991).
    • [19] N. C. Wardlaw and Y. Li, Transp. Porous Media 3, 17 (1988).
    • [20] C. D. Tsakiroglou and A. C. Payatakes, Adv. Colloid Interface Sci. 75, 215 (1998).
    • [21] K. J. Ma˚løy, L. Furuberg, J. Feder, and T. Jøssang, Phys. Rev. Lett. 68, 2161 (1992).
    • [22] L. Xu, S. Davies, A. B. Schofield, and D. A. Weitz, Phys. Rev. Lett. 101, 094502 (2008).
    • [23] Y. C. Yortsos, Transp. Porous Media 18, 107 (1995).
    • [24] L. W. Lake, Enhanced Oil Recovery (Prentice-Hall, Englewood Cliffs, NJ, 1989).
    • [25] J. M. Nordbotten and H. K. Dahle, Water Resour. Res. 47, W02537 (2011).
    • [26] M. J. Golding, J. A. Neufeld, M. A. Hesse, and H. E. Huppert, J. Fluid Mech. 678, 248 (2011).
    • [27] G. I. Barenblatt, App. Math. Mech. 16, 67 (1952) [Prikl. Mat. Mekh. 16, 67 (1952)].
    • [28] P. H. Valvatne and M. J. Blunt, Water Resour. Res. 40, W07406 (2004).
    • [29] R. Juanes, E. J. Spiteri, F. M. Orr, Jr., and M. J. Blunt, Water Resour. Res. 42, W12418 (2006).
    • [30] C. H. Pentland, R. El-Maghraby, S. Iglauer, and M. J. Blunt, Geophys. Res. Lett. 38, L06401 (2011).
    • [31] C. Chalbaud, M. Robin, J.-M. Lombard, F. Martin, P. Egermann, and H. Bertin, Adv. Water Resour. 32, 98 (2009).
    • [32] S. Bachu, Environ. Geol. 44, 277 (2003).
    • [33] C. W. MacMinn and R. Juanes, Comput. Geosci. 13, 483 (2009).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok