LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: Condensed Matter - Statistical Mechanics, Quantum Physics
We consider the general problem of estimating an unknown control parameter of an open quantum system. We establish a direct relation between the evolution of both system and environment and the precision with which the parameter can be estimated. We show that when the open quantum system undergoes a first-order dynamical phase transition the quantum Fisher information (QFI), which gives the upper bound on the achievable precision of any measurement of the system and environment, becomes quadratic in observation time (cf. “Heisenberg scaling”). In fact, the QFI is identical to the variance of the dynamical observable that characterizes the phases that coexist at the transition, and enhanced scaling is a consequence of the divergence of the variance of this observable at the transition point. This identification makes it possible to establish the finite time scaling of the QFI. Near the transition the QFI is quadratic in time for times shorter than the correlation time of the dynamics. In the regime of enhanced scaling the optimal measurement whose precision is given by the QFI involves measuring both system and output. As a particular realization of these ideas, we describe a theoretical scheme for quantum enhanced estimation of an optical phase shift using the photons being emitted from a quantum system near the coexistence of dynamical phases with distinct photon emission rates.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H. Ha¨ffner, W. Ha¨nsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Ko¨rber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gu¨hne, W. Du¨r, and R. Blatt, Nature (London) 438, 643 (2005).
    • [2] D. Burgarth and K. Yuasa, Phys. Rev. Lett. 108, 080502 (2012).
    • [3] For a review see, V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011).
    • [4] LIGO Scientific Collaboration, Nat. Phys. 7, 962 (2011).
    • [5] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992); D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science 304, 1476 (2004); C. F. Roos, M. Chwalla, K. Kim, M. Riebe, and R. Blatt, Nature (London) 443, 316 (2006).
    • [6] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
    • [7] P. Zanardi, P. Giorda, and M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007); P. Zanardi, M. G. A. Paris, L. Campos Venuti, Phys. Rev. A 78, 042105 (2008).
    • [8] R. Blatt, G. J. Milburn, and A. Lvovksy, J. Phys. B 46, 100201 (2013).
    • [9] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Bu¨chler, and P. Zoller, Nat. Phys. 4, 878 (2008); B. Kraus, H. P. Bu¨chler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Phys. Rev. A 78, 042307 (2008).
    • [10] Z. Jiang, Phys. Rev. A 89, 032128 (2014).
    • [11] J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 57, 1699 (1986).
    • [12] E. Barkai, Y. J. Jung, and R. Silbey, Annu. Rev. Phys. Chem. 55, 457 (2004).
    • [13] M. M. Wolf, G. Ortiz, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 97, 110403 (2006).
    • [14] F. Verstraete and J. I. Cirac, Phys. Rev. Lett. 104, 190405 (2010).
    • [15] J. Haegeman, J. I. Cirac, T. J. Osborne, and F. Verstraete, Phys. Rev. B 88, 085118 (2013).
    • [16] M. Jarzyna and R. Demkowicz-Dobrzanski, Phys. Rev. Lett. 110, 240405 (2013).
    • [17] I. Lesanovsky, M. van Horssen, M. Gu¸ta˘, and J. P. Garrahan, Phys. Rev. Lett. 110, 150401 (2013).
    • [18] J. P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010).
    • [19] C. Ates, B. Olmos, J. P. Garrahan, and I. Lesanovsky, Phys. Rev. A 85, 043620 (2012).
    • [20] M. Guta, Phys. Rev. A 83, 062324 (2011).
    • [21] S. Gammelmark and K. Mølmer, Phys. Rev. Lett. 112, 170401 (2014).
    • [22] C. Catana, L. Bouten, and M. Gu¸ta˘, J. Phys. A: Math. Theor. 48, 365301 (2015).
    • [23] B. M. Escher, arXiv:1212.2533.
    • [24] C. W. Helstrom, Phys. Lett. A 25, 101 (1967); IEEE Trans. Inf. Theory 14, 234 (1968); S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
    • [25] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976); G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
    • [26] C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (SpringerVerlag, Berlin, 2004).
    • [27] M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
    • [28] A. De Pasquale, D. Rossini, P. Facchi, and V. Giovannetti, Phys. Rev. A 88, 052117 (2013).
    • [29] M. Guta and J. Kiukas, Commun. Math. Phys. 335, 1397 (2015).
    • [30] K. Macieszczak, M. Guta, I. Lesanovsky, and J. P. Garrahan (unpublished).
    • [31] T. C. Ralph, Phys. Rev. A 65, 042313 (2002).
    • [32] J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107, 083601 (2011).
    • [33] C. C. Gerry and J. Mimih, Phys. Rev. A 82, 013831 (2010).
    • [34] B. Gaveau and L. S. Schulman, J. Math. Phys. 39, 1517 (1998).
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | ESCQUMA

Cite this article