LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Saether, KP; Little, CTS; Campbell, KA (2010)
Publisher: Polish Academy of Sciences, Institue of Paleobiology
Languages: English
Types: Article
Subjects:
Provanna marshalli sp. nov. is described from Early to Middle Miocene-age fossil hydrocarbon seep localities in the East Coast Basin, North Island, New Zealand, adding to 18 modern and three fossil species of the genus described. Modern species are well represented at hydrothermal vent sites as well as at hydrocarbon seeps and on other organic substrates in the deep-sea, including sunken wood and whale falls. All described fossil Provanna species are restricted to hydrocarbon seep deposits, with a few reports of suspected fossil specimens of the genus from other chemosynthetic environments such as plesiosaurid carcasses, and the oldest occurrences are dated to the Middle Cenomanian (early Late Cretaceous). The New Zealand fossil species is the most variable species of the genus described to date, and may be conspecific with, or antecedent to, a poorly sampled, undescribed modern species found at seep sites off the East Coast of North Island. The microstructure of a fossil Provanna species is reported here for the first time, and found to be comparable to some modern specimens of the genus.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ager, D.V. 1986. Migrating fossils, moving plates and an expanding Earth. Modern Geology 10: 377-390.
    • Amano, K. and Little, C.T.S. 2005. Miocene whale−fall community from Hokkaido, northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 215: 345-356. http://dx.doi.org/10.1016/j.palaeo.2004.10.003
    • Amano, K., Little, C.T.S., and Inoue, K. 2007. A new Miocene whale−fall community from Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 236-242. http://dx.doi.org/10.1016/j.palaeo.2006.10.017
    • Ansell, J.H. and Bannister, S.C. 1996. Shallow morphology of the subducted Pacific plate along the Hikurangi margin, New Zealand. Physics of the Earth and Planetary Interiors 93: 3-20. http://dx.doi.org/10.1016/0031-9201(95)03085-9
    • Baco, A., Rowden, A.A., Levin, L.A., Smith, C.R., and Bowden, D. 2010. Initial characterization of cold seep faunal communities on the New Zealand margin. Marine Geology (2010), http://dx.doi.org/10.1016/j.margo.2009.06.015.
    • Ballance, P.F. 1976. Evolution of the Upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth and Planetary Science Letters 28: 356-370. http://dx.doi.org/10.1016/0012-821X(76)90197-7
    • Barnes, P.M., Nicol, A., and Harrison, T. 2002. Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone, New Zealand. The Geological Society of America Bulletin 114: 1379-1405. http://dx.doi.org/10.1130/0016-7606 (2002)114%3C1379:LCEAEP%3E2.0.CO;2
    • Bergquist, D.C., Eckner, J.T., Urcuyo, I.A., Cordes, E.E., Hourdez, S. Macko, S.A., and Fisher, C.R. 2007. Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Marine Ecology Progress Series 330: 49-65. http://dx.doi.org/10.3354/meps330049
    • Bouchet, P., Rocroi, J.−P., Frýda, J., Hausdorf, B., Ponder, W.F., Valdés, Á., and Warén, A. 2005. Classification and nomenclator of gastropod families. Malacologia 47: 1-397.
    • Campbell, K.A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 362-407.
    • Campbell, K.A., Francis, D.A., Collins, M., Gregory, M.R., Greinert, J., and Aharon, P. 2008. Hydrocarbon seep−carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sedimentary Geology 204: 83-105. http://dx.doi.org/10.1016/j.sedgeo.2008.01.002
    • Carney, R.S. 1994. Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo−Marine Letters 14: 149-159. http://dx.doi.org/10.1007/BF01203726
    • Carter, J.G. 1990. Glossary of skeletal biomineralization. In: J.G. Carter (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Volume 1, 609-671. Van Nostrand Reinhold, New York.
    • Cordes, E.E., Bergquist, D.C., and Fisher, C.R. 2009. Macro−ecology of Gulf of Mexico cold seeps. Annual Review of Marine Science 1: 143-168. http://dx.doi.org/10.1146/annurev.marine.010908.163912
    • Danner, W.R. 1966. Limestone resources of western Washington. Washington State Division of Mines Bulletin 52: 1-424.
    • Distel, D., Baco, A.R., Chuang, E., Morrill, W., Cavanaugh, C.M., and Smith, C.R. 2000. Do mussels take wooden steps to deep−sea vents? Nature 403: 725-726. http://dx.doi.org/10.1038/35001667
    • Fujikura, K., Fujiwara, Y., Kojima, S., and Okutani, T. 2002. Micro−scale distribution of molluscs occurring in deep−sea chemosynthesis−based communities in the Japan Trench. Venus 60: 225-236.
    • Gilbert, G.K. and Gulliver, F.P. 1894. Tepee Buttes. Bulletin of the Geological Society of America 6: 333-342.
    • Gill, F.L. 2005. Fossil Cold Seep Communities in the Caribbean Region. 261 pp. Unpublished Ph.D. thesis. University of Leeds, Leeds.
    • Gill, F.L., Harding, I.C., Little, C.T.S., and Todd, J.A. 2005. Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 191-209. http://dx.doi.org/10.1016/j.palaeo.2005.04.024
    • Goedert, J.L. and Benham, S.R. 2003. Biogeochemical processes at ancient methane seeps: the Bear River site in southwestern Washington. In: T.W. Swanson (ed.), Western Cordillera and Adjacent Areas. Geological Society of America Field Guide 4: 201-208.
    • Goedert, J.L. and Campbell, K.A. 1995. An Early Oligocene chemosynthetic community from the Makah Formation, northwestern Olympic Peninsula, Washington. The Veliger 38: 22-29.
    • Goedert, J.L. and Kaler, K.L. 1996. A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a Middle Eocene cold−seep carbonate in the Humptulips Formation, western Washington. The Veliger 39: 65-70.
    • Gustafson, R.G. and Lutz, R.A. 1994. Molluscan life history traits at deep−sea hydrothermal vents and cold methane/sulfide seeps. In: C.M. Young and K.J. Eckelbarger (eds.), Reproduction, Larval Biology, and Recruitment of the Deep−Sea Benthos, 76-97. Columbia University Press, New York.
    • Hessler, R.R. and Lonsdale, P.F. 1991. Biogeography of Mariana Trough hydrothermal vent communities. Deep−Sea Research 38: 185-199. http://dx.doi.org/10.1016/0198-0149(91)90079-U
    • Kaim, A. and Kelly, S.R.A. 2009. Mass occurrence of hokkaidoconchid gastropods in the Upper Jurassic methane seep carbonate from Alexander Island, Antarctica. Antarctic Science 21: 279-284. http://dx.doi.org/10.1017/S0954102009001813
    • Kaim, A., Jenkins, R.G., and Hikida, Y. 2009. Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontologica Polonica 54: 463-490. http://dx.doi.org/10.4202/app.2009.0042
    • Kaim, A., Jenkins, R.G., and Warén, A. 2008a. Provannid and provannidlike gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zoological Journal of the Linnean Society 154: 421-436.
    • Kaim, A., Kobayashi, Y., Echizenya, H., Jenkins, R.G., and Tanabe, K. 2008b. Chemosynthesis−based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontologica Polonica 53: 97-104. http://dx.doi.org/10.4202/app.2008.0106
    • Kiel, S. 2004. Shell structures of selected gastropods from hydrothermal vents and seeps. Malacologia 46: 169-183.
    • Kiel, S. 2006. New records and species of molluscs from Tertiary coldseep carbonates in Washington State, USA. Journal of Paleontology 80: 121-137. http://dx.doi.org/10.1666/0022-3360(2006)080%5B0121: NRASOM%5D2.0.CO;2
    • Kiel, S. 2008. An unusual new gastropod from an Eocene hydrocarbon seep in Washington State. Journal of Paleontology 82: 188-191. http://dx.doi.org/10.1666/06-029.1
    • Kiel, S., Amano, K., Hikida, Y., and Jenkins, R.G. 2009. Wood−fall associations from Late Cretaceous deep−water sediments of Hokkaido, Japan. Lethaia 42: 74-82. http://dx.doi.org/10.1111/j.1502-3931.2008.00105.x
    • Kiel, S. and Campbell, K.A. 2005. Lithomphalus enderlini gen. et sp. nov. from cold−seep carbonates in California-a Cretaceous neomphalid gastropod? Palaeogeography, Palaeoclimatology, Palaeoecology 227: 232-241. http://dx.doi.org/10.1016/j.palaeo.2005.04.022
    • Kiel, S. and Goedert, J.L. 2006a. A wood−fall association from Late Eocene deep−water sediments of Washington State, USA. Palaios 21: 548-556. http://dx.doi.org/10.2110/palo.2005.p05-086r
    • Kiel, S. and Goedert, J.L. 2006b. Deep−sea food bonanzas: early Cenozoic whale−fall communities resemble wood−fall rather than seep communities. Proceedings of the Royal Society B 273: 2625-2631. http://dx.doi.org/10.1098/rspb.2006.3620
    • Kiel, S. and Peckmann, J. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40: 345-357. http://dx.doi.org/10.1111/j.1502-3931.2007.00033.x
    • Kiel, S., Campbell, K.A., and Gaillard, C. 2010. New and little known mollusks from ancient chemosynthetic environments. Zootaxa 2390: 26-48.
    • Kiel, S., Campbell, K.A., Elder, W.P., and Little, C.T.S. 2008. Jurassic and Cretaceous gastropods from hydrocarbon seeps in forearc basin and accretionary prism settings, California. Acta Palaeontologica Polonica 53: 679-703. http://dx.doi.org/10.4202/app.2008.0412
    • Levin, L.A. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: An Annual Review 43: 1-46.
    • Levin, L.A. and Michener, R.H. 2002. Isotopic evidence for chemosynthesisbased nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnology and Oceanography 47: 1336-1345.
    • Lewis, K.B. and Marshall, B.A. 1996. Seep faunas and other indicators of methane−rich dewatering on New Zealand convergent margins. New Zealand Journal of Geology and Geophysics 39: 181-200.
    • Little, C.T.S. 2002. The fossil record of hydrothermal vent communities. Cahiers de Biologie Marine 43: 313-316.
    • Little, C.T.S. and Vrijenhoek, R.C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution 18: 582-588. http://dx.doi.org/10.1016/j.tree.2003.08.009
    • Little, C.T.S, Cann, J.R., Herrington, R.J., and Morriseau, M. 1999. Late Cretacerous hydrothermal vent communities from the Troodos Ophiolite, Cyprus. Geology 27: 1027-1030. http://dx.doi.org/10.1130/0091-7613 (1999)027%3C1027:LCHVCF%3E2.3.CO;2
    • Little, C.T.S., Herrington, R.J., Maslennikov, V.V., and Zaykov, V.V. 1998. The fossil record of hydrothermal vent communities. In: R. Mills and K. Harrison (eds.), Modern Ocean Floor Processes and the Geological Record. Geological Society of London, Special Publication 148: 259-270.
    • Lonsdale, P.F. 1977. Clustering of suspension−feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep−Sea Research 24: 857-863. http://dx.doi.org/10.1016/0146−6291(77)90478-7
    • MacAvoy, S.E., Fisher, C.R., Carney, R.S., and Macko, S.A. 2005. Nutritional associations among fauna at hydrocarbon seep communities in the Gulf of Mexico. Marine Ecology Progress Series 292: 51-60. http://dx.doi.org/10.3354/meps292051
    • Moroni, M.A. 1966. Malacofauna del “Calcare a Lucine” di S. Sofia, Forli. Palaeontographia Italica 60: 69-87.
    • Olu, K., Caprais, J.C., Galéron, J., Causse, R., Cosel, R. von, Budzinski, H., Ménach, K. Le, Roux, C. Le, Levaché, D., Khripounoff, A., and Sibuet, M. 2009. Influence of seep emission on the non−symbiont−bearing fauna and vagrant species at an active giant pockmark in the Gulf of Guinea (Congo-Angola margin). Deep−Sea Research Part II: Topical Studies in Oceanography 56: 2380-2393. http://dx.doi.org/10.1016/j.dsr2.2009.04.017
    • Paull, C.K., Hecker, B., Commeau, R., Freeman−Lynde, R.P., Neumann, C., Corso, W.P., Golubic, S., Hook, J. E., Sikes, E., and Curray, J. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965-967. http://dx.doi.org/10.1126/science.226.4677.965
    • Peckmann, J., Goedert, J.L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to the study of methane−seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49: 855-873. http://dx.doi.org/10.1046/j.1365-3091.2002.00474.x
    • Rait, G., Chanier, F., and Waters, D.W. 1991. Landward and seaward−directed thrusting accompanying the onset of subduction beneath New Zealand. Geology 19: 230-233. http://dx.doi.org/10.1130/0091-7613 (1991)019%3C0230:LASDTA%3E2.3.CO;2
    • Rigby, J.K. and Goedert, J.L. 1996. Fossil sponges from a localized coldseep limestone in Oligocene rocks of the Olympic Peninsula, Washington. Journal of Paleontology 70: 900-908.
    • Sahling, H., Rickert, D., Lee, R.W., Linke, P., and Suess, E. 2002. Macrofaunal community structure and sulphide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series 231: 121-138. http://dx.doi.org/10.3354/meps231121
    • Schwartz, H., Sample, J., Weberling, K.D., Minisini, D., and Moore, J.C. 2003. An ancient linked fluid migration system: cold−seep deposits and sandstone intrusions in the Panoche Hills, California, USA. Geo−Marine Letters 23: 340-350. http://dx.doi.org/10.1007/s00367-003-0142-1
    • Smith, C.R. and Baco, A.R. 2003. Ecology of whale falls at the deep−sea floor. Oceanography and Marine Biology: An Annual Review 41: 311-354.
    • Smith, C.R., Baco, A.R., and Glover, A.G. 2002. Faunal succession on replicate deep−sea whale falls: time scales and vent−seep affinities. Cahiers de Biologie Marine 43: 293-297.
    • Squires, R.L. 1995. First fossil species of the chemosynthetic−community gastropod Provanna: localized cold−seep limestones in Upper Eocene and Oligocene rocks, Washington. The Veliger 38: 30-36.
    • Squires, R.L. and Goedert, J.L. 1995. An extant species of Leptochiton (Mollusca: Polyplacophora) in Eocene and Oligocene cold−seep limestones, Olympic Peninsula, Washington. The Veliger 38: 47-53.
    • Stanton, T.W. 1895. Contributions to the Cretaceous paleontology of the Pacific Coast: the fauna of the Knoxville beds. United States Geological Survey Bulletin 133: 1-132.
    • Suess, E. 2010. Marine cold seeps. In: K.N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, Volume 1, Part 3, 187-203. SpringerVerlag, Berlin.
    • Tanaka, K. 1959. Molluscan fossils from central Shinano, Nagano Prefecture, Japan (Part 1). Journal of the Faculty of Science, Shinshu University 8: 115-133.
    • Van Dover, C.L. 2000. The Ecology of Deep−Sea Hydrothermal Vents. 424 pp. Princeton University Press, Princeton.
    • Van Winkle, T. 1919. Remarks on some new species from Trinidad. Bulletins of American Paleontology 8: 19-33.
    • Voight, J.R. 2000. A deep−sea octopus (Graneledone cf. boreopacifica) as a shell−crushing hydrothermal vent predator. Journal of the Zoological Society of London 252: 335-341. http://dx.doi.org/10.1111/j.1469-7998.2000.tb00628.x
    • Voight, J.R. 2008. Observations of deep−sea octopodid behaviour from undersea vehicles. American Malacological Bulletin 24: 43-50. http://dx.doi.org/10.4003/0740-2783-24.1.43
    • Warén, A. and Bouchet, P. 1986. Four new species of Provanna Dall (Prosobranchia, Cerithiacea?) from East Pacific hydrothermal sites. Zoologica Scripta 15: 157-164. http://dx.doi.org/10.1111/j.1463-6409.1986.tb00218.x
    • Warén, A. and Bouchet, P. 1993. New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zoologica Scripta 22: 1-90. http://dx.doi.org/10.1111/j.1463 6409.1993.tb00342.x
    • Warén, A. and Bouchet, P. 2001. Gastropoda and Monoplacophora from hydrothermal vents and seeps: new taxa and records. The Veliger 44: 116-231.
    • Warén A. and Bouchet, P. 2009. New gastropods from deep−sea hydrocarbon seeps off West Africa. Deep−Sea Research Part II: Topical Studies in Oceanography 56: 2326-2349. http://dx.doi.org/10.1016/j.dsr2.2009.04.013
    • Warén, A. and Ponder, W. F. 1991. New species, anatomy, and systematic position of the hydrothermal vent and hydrocarbon seep gastropod family Provannidae fam.n. (Caenogastropoda). Zoologica Scripta 20: 27-56. http://dx.doi.org/10.1111/j.1463-6409.1991.tb00273.x
    • Yamamoto, T., Kobayashi, T., Nakasone, K., and Nakao, S. 1999. Chemosynthetic community at North Knoll, Iheya Ridge, Okinawa Trough. JAMSTEC Journal of Deep−Sea Research 15: 19-24.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article