LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
A biosensor for the determination of urea in human serum was fabricated using a combination of inkjet printed polyaniline nanoparticles and inkjet printed urease enzyme deposited sequentially onto screen-printed carbon paste electrodes. Chronocoulometry was used to measure the decomposition of urea via the doping of ammonium at the polyaniline-modified electrode surface at -0.3 V vs. Ag/AgCl. Ammonium could be measured in the range from 0.1 to 100 mM. Urea could be measured by the sensor in the range of 2 to 12 mM (r2=0.98). The enzyme biosensor was correlated against a spectrophotometric assay for urea in 15 normal human serum samples which yielded a correlation coefficient of 0.85. Bland-Altman plots showed that in the range of 5.8 to 6.6 mM urea, the developed sensor had an average positive experimental bias of 0.12 mM (<2% RSD) over the reference method.

Share - Bookmark

Cite this article