Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: AGU
Languages: English
Types: Article
Subjects: sub-02
This is the accepted manuscript version.The final version is available from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/2014GL061555/full. Long-lived detachment faults play an important role in the construction of new oceanic crust at slow-spreading mid-oceanic ridges. Although the corrugated surfaces of exposed low-angle faults demonstrate past slip, it is difficult to determine whether a given fault is currently active. If inactive, it is unclear when slip ceased. This judgment is crucial for tectonic reconstructions where detachment faults are present, and for models of plate spreading. We quantify variation in sediment thickness over two corrugated surfaces near 16.5°N at the Mid-Atlantic Ridge using near-bottom CHIRP data. We show that the distribution of sediment and tectonic features at one detachment fault is consistent with slip occurring today. In contrast, another corrugated surface 20 km to the south shows a sediment distribution suggesting that slip ceased ~150,000 years ago. Data presented here provide new evidence for active detachment faulting, and suggest along-axis variations in fault activity occur over tens of kilometers. This work was supported by the National Science Foundation grant number OCE-1155650.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baines, A. G., M. J. Cheadle, B. E. John, and J. J. Schwartz (2008), The rate of oceanic detachment faulting at Atlantis Bank SW Indian Ridge, Earth Planet. Sci. Lett., 273, 105-114.
    • Bohnenstiehl, D. R., M. Tolstoy, R. P. Dziak, C. G. Fox, and D. K. Smith (2002), Aftershock sequences in the mid-ocean ridge environment: An analysis using hydroacoustic data, Tectonophysics, 354(1-2), 49-70.
    • Cann, J. R., D. K. Blackman, D. K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos, A. R. Pascoe, and J. Escartín (1997), Corrugated slip surfaces formed at North Atlantic ridge-transform intersections, Nature, 385, 329-332.
    • Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartín, V. Combier, and M. Baala (2006), Modes of seafloor generation at a melt-poor ultraslow-spreading ridge, Geology, 34, 605-608.
    • Caress, D. W., and D. L. Chayes (1996), Improved Processing of Hydrosweep DS Multibeam Data on the R/V Maurice Ewing, Mar. Geophys. Res., 18, 631-650.
    • Cohen, J. K., and J. W. Stockwell (2013), CWP/SU: Seismic Un*x. Release No. 43R5: An open source software package for seismic research and processing, Center for Wave Phenomena, Colo. School of Mines, Golden, Colo.
    • Damuth, J. E. (1977), Late Quaternary sedimentation in the western equatorial Atlantic Late Quaternary sedimentation in the western equatorial Atlantic, Geol. Soc. Am. Bull., 88, 695-710.
    • Davis, G. A., and G. S. Lister (1988), Detachment faulting in continental extension; Perspectives from the Southwestern U.S. Cordillera, Geol. Soc. Am. Spec. Pap., 218, 133-159.
    • Davis, G. A., T. K. Fowler, K. M. Bishop, T. C. Brudos, S. J. Friedmann, D. W. Burbank, M. A. Parke, and B. C. Burchfiel (1993), Pluton pinning of an active Miocene detachment fault system, eastern Mojave Desert, California, Geology, 21(7), 627.
    • DeMartin, B. J., R. A. Sohn, J. P. Canales, and S. E. Humphris (2007), Kinematics and geometry of active detachment faulting beneath the TransAtlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge, Geology, 35(8), 711-714.
    • Dick, H. J. B., M. A. Tivey, and B. E. Tucholke (2008), Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30'N, 45°20'W, Geochem. Geophys. Geosyst., 9, Q05014, doi:10.1029/2007GC001645.
    • Dick, H. J. B., D. K. Smith, J. R. Cann, H. Schouten, H. Marschall, R. E. Parnell-Turner, and D. Yoerger (2013), Crustal Heterogeneity and Stratigraphy on the Mid-Atlantic Ridge at 16°-17°N, Abstract OS41E-06 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.
    • Escartín, J., D. K. Smith, J. R. Cann, H. Schouten, C. H. Langmuir, and S. Escrig (2008), Central role of detachment faults in accretion of slowspreading oceanic lithosphere, Nature, 455(7214), 790-4.
    • Fornari, D. J. (2003), A new deep-sea towed digital camera and multi-rock coring system, Eos Trans. AGU, 84, 69-76, doi:10.1029/ 2003EO080001.
    • Fujiwara, T., J. Lin, T. Matsumoto, P. B. Kelemen, B. E. Tucholke, and J. F. Casey (2003), Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma, Geochem. Geophys. Geosyst., 4, 1024, doi:10.1029/2002GC000364.
    • Grimes, C. B., B. E. John, M. J. Cheadle, and J. L. Wooden (2008), Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206 Pb/ 238 U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR), Geochem. Geophys. Geosyst, 9, Q08012, doi:10.1029/2008GC002063.
    • Ildefonse, B., D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller, and C. J. MacLeod (2007), Oceanic core complexes and crustal accretion at slowspreading ridges, Geology, 35(7), 623-626.
    • John, B. E. (1987), Geometry and evolution of a mid-crustal extensional fault system: Chemehuevi Mountains, southeastern California, in Continental Extensional Tectonics, edited by M. P. Coward, J. F. Dewey, and P. L. Hancock, pp. 313-335, Geol. Soc., London, U. K.
    • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole (2000), Evidence for enhanced mixing over rough topography in the abyssal ocean, Nature, 403, 179-82.
    • MacLeod, C. J., et al. (2002), Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15 45' N, Geology, 30(10), 879-882.
    • Okino, K., K. Matsuda, D. M. Christie, Y. Nogi, and K. Koizumi (2004), Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance, Geochem. Geophys. Geosyst., 5, Q12012, doi:10.1029/2004GC000793.
    • Smith, D. K., J. R. Cann, and J. Escartín (2006), Widespread active detachment faulting and core complex formation near 13°N on the MidAtlantic, Nature, 442, 440-443.
    • Smith, D. K., J. Escartín, H. Schouten, and J. R. Cann (2008), Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°-15°N), Geochem. Geophys. Geosyst., 9, Q03003, doi:10.1029/ 2007GC001699.
    • Smith, D. K., H. Schouten, H. J. B. Dick, and J. R. Cann (2013), Development of different modes of detachment faulting at intermediate magma supply, Abstract T23F-2657 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec.
    • Tucholke, B. E., and J. Lin (1994), A geological model for the structure of ridge segments in slow spreading ocean crust, J. Geophys. Res., 99, 11,911-937,958.
    • Tucholke, B. E., J. Lin, and M. C. Kleinrock (1998), Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, J. Geophys. Res., 103, 9857-9866, doi:10.1029/98JB00167.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article