LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QH75
Tools for social research are critical for developing an understanding of conservation problems and assessing the feasibility of conservation actions. Social surveys are an essential tool frequently applied in conservation to assess both people’s behaviour and to understand its drivers. However, little attention has been given to the weaknesses and strengths of different survey tools. When topics of conservation concern are illegal or otherwise sensitive, data collected using direct questions are likely to be affected by non-response and social desirability biases, reducing their validity. These sources of bias associated with using direct questions on sensitive topics have long been recognised in the social sciences but have been poorly considered in conservation and natural resource management.\ud \ud We reviewed specialized questioning techniques developed in a number of disciplines specifically for investigating sensitive topics. These methods ensure respondent anonymity, increase willingness to answer, and critically, make it impossible to directly link incriminating data to an individual. We describe each method and report their main characteristics, such as data requirements, possible data outputs, availability of evidence that they can be adapted for use in illiterate communities, and summarize their main advantages and disadvantages. Recommendations for their application in conservation are given. We suggest that the conservation toolbox should be expanded by incorporating specialized questioning techniques, developed specifically to increase response accuracy. By considering the limitations of each survey technique, we will ultimately contribute to more effective evaluations of conservation interventions and more robust policy decisions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Acquisti, A., John, L.K., Loewenstein, G., 2012. The impact of relative standards on the propensity to disclose. J. Mark. Res. 49, 160 174.
    • Adams, J., Parkinson, L., Sanson-Fisher, R.W., Walsh, R.A., 2008. Enhancing self-report of adolescent smoking: the effects of bogus pipeline and anonymity. Addict. Behav. 33, 1291 6.
    • Agrawal, A., Gibson, C.C., 1999. Enchantment and disenchantment: the role of community in natural resource conservation. World Dev. 27, 21.
    • Aquilino, W. S., Wright, D. L., Supple, A. J., 2000. Response effects due to bystander presence in CASI and paper-and-pencil surveys of drug use and alcohol use. Substance Use and Misuse 35, 845 867.
    • Bao, Y., Luo, W., Zhang, X., 2013. Estimating positive surveys from negative surveys. Stat. Probab. Lett. 83, 551-558.
    • Barber-Meyer, S.M., 2010. Dealing with the clandestine nature of wildlife-trade market surveys. Conserv. Biol. 24, 918 923.
    • Barton, A.H., 1958. Asking the embarrassing question. Public Opin. Q. 22, 67.
    • Blair, G., Imai, K., 2012. Statistical analysis of list experiments. Polit. Anal. 20, 47 77.
    • Blank, S.G., Gavin, M.C., 2009. The randomized response technique as a tool for estimating noncompliance rates in fisheries: a case study of illegal red abalone (Haliotis rufescens) fishing in Northern California. Environmental Conservation 36, 112-119.
    • Böckenholt, U., van der Heijden, P.G.M., 2007. Item randomized-response models for measuring noncompliance: risk-return perceptions, social influences, and self-protective responses. Psychometrika 72, 245 262.
    • Brace, I., 2008. Questionnaire design: how to plan, structure and write survey material for effective market research, 2nd ed. Kogan Page Publishers.
    • Bullock, W., Imai, K., Shapiro, J.N., 2011. Statistical analysis of endorsement experiments: measuring support for militant groups in Pakistan. Polit. Anal. 19, 363 384.
    • Bunnefeld, N., Hoshino, E., Milner-Gulland, E.J., 2011. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441 447.
    • Catania, J. A., Binson, D., Canchola, J., Pollack, L. M., Hauck, W., Coates, T. J., 1996. Effects of interviewer gender, interviewer choice, and item wording on responses to questions concerning sexual behavior. Public Opin Q. 60, 345 375.
    • Chaudhuri, A., Christofides, T., 2013. Indirect questioning in sample surveys. Springer.
    • Corstange, D., 2009. Sensitive questions, truthful Answers? Modeling the list experiment with LISTIT. Polit. Anal. 17, 45 63.
    • Cruyff, M.J.L.F., van den Hout, A., van der Heijden, P.G.M., 2008. The analysis of randomized response sum score variables. J. R. Stat. Soc. Ser. B (Statistical Methodol. 70, 21 30.
    • Droitcour, J., Caspar, R.A., Hubbard, M.L., Parsley, T.L., Visscher, W., Ezzati, T.M., 1991. The item count technique as a method of indirect questioning: A review of its development and a case study application, in: Biemer, P.P., Groves, R.M., Lyberg, L.E., Mathiowetz, N.A., Sudman, S. (Eds.), Measurement Errors in Surveys. New York, NY, pp. 185 210.
    • Droitcour, J., Larson, E.M., 2002. An innovative technique for asking sensitive questions: the threecard method. Bull. Méthodologie Sociol. 75, 5 23.
    • Dykema, J., Diloreto, K., Price, J., White, E., Schaeffer, N., 2012. ACASI Gender-of-interviewer voice effects on reports to questions about sensitive behaviors among young adults. Public Opin Q. 76, 311-325.
    • Eichhorn, B.H., Hayre, L.S., 1983. Scrambled randomized response methods for obtaining sensitive quantitative data. J. Stat. Plan. Inference 7, 307 316.
    • Esponda, F., Guerrero, V.M., 2009. Surveys with negative questions for sensitive items. Stat. Probab. Lett.
    • Fisher, R., 1993. Social desirability bias and the validity of indirect questioning 20, 303 315.
    • GAO, 1999. Survey methodology: an innovative technique for estimating sensitive survey items. Washington, DC.
    • GAO, 2006. Estimating the undocumented population: a grouped a foreign-born respondents. DIANE Publishing.
    • Gavin, M.C., Solomon, J.N., Blank, S.G., 2010. Measuring and monitoring illegal use of natural resources. Conserv. Biol. 24, 89 100.
    • Glynn, A.N., 2013. What can we learn with statistical truth serum?: design and analysis of the list experiment. Public Opin. Q. 77, 159 172.
    • Groenitz, H., 2014. A new privacy-protecting survey design for multichotomous sensitive variables. Metrika 77, 211 224.
    • Groves, R.M., 2006. Nonresponse rates and nonresponse bias in household surveys. Public Opin. Q. 70, 646 675.
    • Holbrook, A.L., Krosnick, J.A., 2010. Social desirability bias in voter turnout reports: tests using the item count technique. Public Opin. Q. 74, 37 67.
    • Horey, J., Groat, M.M., Forrest, S., Esponda, F., 2007. Anonymous data collection in sensor networks, in: 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous). IEEE, pp. 1 8.
    • Hox, J., Lensvelt-Mulders, G., 2004. Randomized response analysis in Mplus. Struct. Equ. Model. A Multidiscip. J. 11, 615 620.
    • Hubbard, M.L., Caspar, R.A., Lessler, J.T., 1989. Respondent reactions to item count lists and randomized response, in: Proceedings of the American Statistical Association, Section for Survey Research Methods. pp. 544 548.
    • Imai, K., 2011. Multivariate regression analysis for the item count technique. J. Am. Stat. Assoc. 106, 407 416.
    • Jackson, Y., Gabrielli, J., Tunno, A.M., Hambrick, E.P., 2012. Strategies for longitudinal research with youth in foster care: a demonstration of methods, barriers, and innovations. Child. Youth Serv. Rev. 34, 1208 1213.
    • Jann, B., Jerke, J., Krumpal, I., 2012. Asking sensitive questions using the crosswise model: an experimental survey measuring plagiarism. Public Opin. Q. 76, 32 49.
    • Javeline, D., 1999. Response effects in polite cultures - a test of acquiescente in Kazakhstan. Public Opin. Q. 63, 1 28.
    • Jepson, P., Jarvie, J.K., MacKinnon, K., Monk, K.A., 2001. The e Science 292, 859 861.
    • Jones, J.P.G., Andriamarovololona, M.M., Hockley, N., 2008. The importance of taboos and social norms to conservation in Madagascar. Conserv. Biol. 22, 976 86.
    • Keane, A., Jones, J.P.G., Edwards-Jones, G., Milner-Gulland, E.J., 2008. The sleeping policeman: understanding issues of enforcement and compliance in conservation. Anim. Conserv. 11, 75 82.
    • Knapp, E.J., Rentsch, D., Schmitt, J., Lewis, C., Polasky, S., 2010. A tale of three villages: choosing an effective method for assessing poaching levels in western Serengeti, Tanzania. Oryx 44, 178 184.
    • Lande, R., 1998. Anthropogenic, ecological and genetic factors in extinction and conservation. Res. Popul. Ecol. (Kyoto). 40, 259 269.
    • Landsheer, J.A., Heijden, P. Van Der, Gils, G. Van., 1999. Trust and understanding, two psychological aspects of randomized response. Quality & Quantity 33, 1 12.
    • Langhaug, L.F., Cheung, Y.B., Pascoe, S.J.S., Chirawu, P., Woelk, G., Hayes, R.J., Cowan, F.M., 2011. How you ask really matters: randomised comparison of four sexual behaviour questionnaire delivery modes in Zimbabwean youth. Sex. Transm. Infect. 87, 165 73.
    • Langhaug, L.F., Sherr, L., Cowan, F.M., 2010. How to improve the validity of sexual behaviour reporting: systematic review of questionnaire delivery modes in developing countries. Trop. Med. Int. Health 15, 362 81.
    • Lau, J.T.F., Yeung, N.C.Y., Mui, L.W.H., Tsui, H.Y., Gu, J., 2011. A simple new method to triangulate self-reported risk behavior data - the bean method. Sex. Transm. Dis. 38, 788 92.
    • Lee, Z., Sargeant, A., 2011. Dealing with social desirability bias: an application to charitable giving. Eur. J. Mark. 45, 703 719.
    • Lensvelt-Mulders, G.J.L.M., Hox, J.J., Heijden, P.G.M. van der, 2005. How to improve the efficiency of randomised response designs. Quality & Quantity 39, 253 265.
    • Lindstrom, D.P., Hattori, M.K., Belachew, T., Tessema, F., 2012. Lifting the curtain on the conditions of sexual initiation among youth in Ethiopia. J. Adolesc. Health 50, 614 20.
    • Linkie, M., Smith, R.J., Leader-Williams, N., 2004. Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodivers. Conserv. 13, 1809 1818.
    • Makkai, T., Mcallister, I., 1992. Measuring social indicators in opinion surveys: a method to improve accuracy on sensitive questions. Soc. Indic. Res. 27, 169 186.
    • Martín-López, B., Montes, C., Ramírez, L., Benayas, J., 2009. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370 1380.
    • Miller, J.D., 1985. The nominative technique: a new method of estimating heroin prevalence., in: Rouse, B.A., Kozel, N.J., Richards, L.G. (Eds.), Self-Report Methods of Estimating Drug Use: Meeting Current Challenges to Validity. NIDA - National Institute on Drug Abuse, pp. 104 24.
    • Milner-Gulland, E.J., Bukreeva, O.M., Coulson, T., Lushchekina, A.A., Kholodova, M. V, Bekenov, A.B., Grachev, I.A., 2003. Reproductive collapse in saiga antelope harems. Nature 422, 135.
    • Moro, M., Fischer, A., Czajkowski, M., Brennan, D., Lowassa, A., Naiman, L.C., Hanley, N., 2013. An investigation using the choice experiment method into options for reducing illegal bushmeat hunting in western Serengeti. Conserv. Lett. 6, 37 45.
    • Näher, A.-F., Krumpal, I., 2011. Asking sensitive questions: the impact of forgiving wording and question context on social desirability bias. Quality & Quantity 46, 1601 1616.
    • Newing, H., 2011. Conducting research in conservation: social science methods and practice. Routledge.
    • Nielsen, M.R., Jacobsen, J.B., Thorsen, B.J., 2013. Factors determining the choice of hunting and trading bushmeat in the Kilombero Valley, Tanzania. Conserv. Biol.
    • Nuno, A., 2013. Managing social-ecological systems under uncertainty: implications for conservation. Imperial College London. PhD thesis.
    • Nuno, A., Bunnefeld, N., Milner-Gulland, E.J., 2013a. Matching observations and reality: using simulation models to improve monitoring under uncertainty in the Serengeti. J. Appl. Ecol. 50, 488 498.
    • Petróczi, A., Nepusz, T., Cross, P., Taft, H., Shah, S., Deshmukh, N., Schaffer, J., Shane, M., Adesanwo, C., Barker, J., Naughton, D.P., 2011. New non-randomised model to assess the prevalence of discriminating behaviour: a pilot study on mephedrone. Subst. Abuse Treat. Prev. Policy 6, 20.
    • Pollock, K.H., Bek, Y., 1976. A comparison of three randomized response models for quantitative data. J. Am. Stat. Assoc. 71, 884 886.
    • Pomeroy, R., Parks, J., Pollnac, R., Campson, T., Genio, E., Marlessy, C., Holle, E., Pido, M., Nissapa, A., Boromthanarat, S., 2007. Fish wars: conflict and collaboration in fisheries management in Southeast Asia. Mar. Policy 31, 645 656.
    • Raymond, C.M., Knight, A.T., 2013. Applying social research techniques to improve the effectiveness of conservation planning. Bioscience 63, 320 321.
    • Razafimanahaka, J.H., Jenkins, R.K.B., Andriafidison, D., Randrianandrianina, F., Rakotomboavonjy, V., Keane, A., Jones, J.P.G., 2012. Novel approach for quantifying illegal bushmeat consumption reveals high consumption of protected species in Madagascar. Oryx 46, 584 592.
    • Roberts, J.M., Brewer, D.D., 2006. Estimating the prevalence of male clients of prostitute women in Vancouver with a simple capture-recapture method. J. R. Stat. Soc. Ser. A (Statistics Soc. 169, 745 756.
    • Sandbrook, C., Adams, W.M., Büscher, B., Vira, B., 2013. Social research and biodiversity conservation. Conserv. Biol. 27, 1487 90.
    • Sheppard, S.C., Earleywine, M., 2013. Using the unmatched count technique to improve base rate estimates of risky driving behaviours among veterans of the wars in Iraq and Afghanistan. Inj. Prev. 19, 382 386.
    • Silva, R. de S. e, Vieira, E.M., 2009. Frequency and characteristics of induced abortion among married and single women in São Paulo, Brazil. Cad. Saude Publica 25, 179 187.
    • Simon, P., Striegel, H., Aust, F., Dietz, K., Ulrich, R., 2006. Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction 101, 1640 4.
    • Sirén, A. H., J. C. Cardenas, J.C., Machoa, J.D., 2006. The relation between income and hunting in tropical forests: an economic experiment in the field. Ecology and Society 11, 44.
    • Sirken, M.G., 1972. Stratified sample surveys with Multiplicity. J. Am. Stat. Assoc. 67, 224 227.
    • Solomon, J.N., Jacobson, S., Wald, K.D., Gavin, M.C., 2007. Estimating illegal resource use at a Ugandan park with the randomized response technique. Hum. Dimens. Wildl. 12, 75 88.
    • St. John, F.A.V., Edwards-Jones, G., Gibbons, J.M., Jones, J.P.G., 2010. Testing novel methods for assessing rule breaking in conservation. Biol. Conserv. 143, 1025 1030.
    • St. John, F.A.V., Keane, A., Edwards-Jones, G., Jones, L., Yarnell, R.W., Jones, J.P.G., 2012. Identifying indicators of illegal behaviour: carnivore killing in human-managed landscapes. Proc. R. Soc. B Biol. Sci. 279, 804 812.
    • St. John, F.A.V., Keane, A., Milner-Gulland, E.J., 2013. Effective conservation depends upon understanding human behaviour, in: Macdonald, D.W., Willis, K.J. (Eds.), Key Topics in Conservation Biology 2. John Wiley & Sons, Oxford, U.K., pp. 344 361.
    • Sudman, S., Sirken, M.G., Cowan, C.D., 1988. Sampling rare and elusive populations. Science 240, 991 6.
    • Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., De Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L., Williams, S.E., 2004. Extinction risk from climate change. Nature 427, 145 8.
    • Tian, G.-L., Tang, M.-L., 2013. Incomplete categorical data design: non-randomized response techniques for sensitive questions in surveys. CRC Press.
    • Tian, G.-L., Yu, J.-W., Tang, M.-L., Geng, Z., 2007. A new non-randomized model for analysing sensitive questions with binary outcomes. Stat. Med. 26, 4238 4252.
    • Tourangeau, R., Yan, T., 2007. Sensitive questions in surveys. Psychol. Bull. 133, 859 883.
    • Trappmann, M., Krumpal, I., Kirchner, A., Jann, B., 2014. Item sum: a new techniques for asking quantitative sensitive questions. J. Surv. Stat. Methodol. 2, 58-77.
    • Treves, A., 2009. Hunting for large carnivore conservation. J. Appl. Ecol. 46, 1350 1356.
    • Treves, A., Karanth, K.U., 2003. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491 1499.
    • Tsuchiya, T., Hirai, Y., Ono, S., 2007. A study of the properties of the item count technique. Public Opin. Q. 71, 253 272.
    • Underwood, F.M., Burn, R.W., Milliken, T., 2013. Dissecting the illegal ivory trade: an analysis of ivory seizures data. PLoS One 8, e76539.
    • Vakilian, K., Mousavi, S.A., Keramat, A., 2014. Estimation of sexual behavior in the 18-to-24-yearsold Iranian youth based on a crosswise model study. BMC Res. Notes 7, 28.
    • Van den Hout, A., van der Heijden, P.G.M., Gilchrist, R., 2007. The logistic regression model with response variables subject to randomized response. Comput. Stat. Data Anal. 51, 6060 6069.
    • Vitos, M., Lewis, J., Stevens, M., Haklay, M., 2013. Making local knowledge matter, in: Proceedings of the 3rd ACM Symposium on Computing for Development - ACM DEV New York, USA.
    • Warner, S.L., 1965. Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60, 63 69.
    • White, P.C.L., Jennings, N.V., Renwick, A.R., Barker, N.H.L., 2005. REVIEW: Questionnaires in ecology: a review of past use and recommendations for best practice. J. Appl. Ecol. 42, 421 430.
    • Xie, H., Kulik, L., Tanin, E., 2011. Privacy-aware collection of aggregate spatial data. Data Knowl. Eng. 70, 576 595.
    • Yu, J.-W., Tian, G.-L., Tang, M.-L., 2008. Two new models for survey sampling with sensitive characteristic: design and analysis. Metrika 67, 251 263.
    • Zigerell, L.J., 2011. You w 92, 552 562.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    64
    64%
  • No similar publications.

Share - Bookmark

Funded by projects

  • FCT | SFRH/BD/43186/2008

Cite this article