LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: The Royal Society
Journal: Proceedings of the Royal Society B: Biological Sciences
Languages: English
Types: Article
Subjects: 33, 202, breathing, hemichannel, 1001, 70, Evolution, Research Article, connexin, chemosensitivitiy, QP
CO2 readily combines with H2O to form and H+. Because an increase of only 100 nM in the concentration of H+ (a decrease of 0.1 unit of pH) in blood can prove fatal, the regulated excretion of CO2 during breathing is an essential life-preserving process. In rodents and humans, this vital process is mediated in part via the direct sensing of CO2 via connexin26 (Cx26). CO2 binds to hemichannels of Cx26 causing them to open and allow release of the neurotransmitter ATP. If Cx26 were to be a universal and important CO2 sensor across all homeothermic animals, then a simple hypothesis would posit that it should exhibit evolutionary adaptation in animals with different homeostatic set points for the regulation of partial pressure of arterial CO2 (PaCO2). In humans and rats, PaCO2 is regulated around a set point of 40 mmHg. By contrast, birds are able to maintain cerebral blood flow and breathing at much lower levels of PaCO2. Fossorial mammals, such as the mole rat, live exclusively underground in burrows that are both hypoxic and hypercapnic and can thrive under very hypercapnic conditions. We have therefore compared the CO2 sensitivity of Cx26 from human, chicken, rat and mole rat (Heterocephalus glaber). We find that both the affinity and cooperativity of CO2 binding to Cx26 have been subjected to evolutionary adaption in a manner consistent with the homeostatic requirements of these four species. This is analogous to the evolutionary adaptation of haemoglobin to the needs of O2 transport across the animal kingdom and supports the hypothesis that Cx26 is an important and universal CO2 sensor in homeotherms.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Gourine AV, Llaudet E, Dale N, Spyer KM. 2005 ATP
    • central nervous system. Nature 436, 108 - 111.
    • (doi:10.1038/nature03690)
    • Huckstepp RT, Eason R, Sachdev A, Dale N. 2010
    • CO2-dependent opening of connexin 26 and related
    • beta connexins. J. Physiol. 588, 3921 - 3931.
    • (doi:10.1113/jphysiol.2010.192096)
    • Roper DI, Dale N. 2013 CO2 directly modulates
    • connexin 26 by formation of carbamate bridges
    • between subunits. eLife 2, e01213. (doi:10.7554/
    • eLife.01213)
    • Willecke K, Marina N, Gourine AV, Dale N. 2010
    • Connexin hemichannel-mediated CO2-dependent
    • to central respiratory chemosensitivity. J. Physiol. 588,
    • 3901 - 3920. (doi:10.1113/jphysiol.2010.192088)
    • Meigh L, Hussain N, Mulkey DK, Dale N. 2014
    • Connexin26 hemichannels with a mutation that causes KID syndrome in humans lack sensitivity to CO2. eLife 3, e04249. (doi:10.7554/eLife.04249)
    • 6. Dobzhansky T. 1964 Biology, molecular and organismic. Am. Zool. 4, 443 - 452. (doi:10.1093/icb/4.4.443)
    • 7. Bouverot P. 1978 Control of breathing in birds compared with mammals. Physiol. Rev. 58, 604 - 655.
    • 8. West JB, Watson RR, Fu Z. 2007 The human lung: did evolution get it wrong? Eur. Respir. J. 29, 11 - 17. (doi:10.1183/09031936.00133306)
    • 9. Faraci FM, Fedde MR. 1986 Regional circulatory responses to hypocapnia and hypercapnia in barheaded geese. Am J Physiol 250, R499 - R504.
    • 10. Osborne JL, Mitchell GS, Powell F. 1977 Ventilatory responses to CO2 in the chicken: intrapulmonary and systemic chemoreceptors. Respir. Physiol. 30, 369 - 382. (doi:10.1016/0034-5687(77)90042-1)
    • 11. Osborne JL, Mitchell GS. 1978 Intrapulmonary and systemic CO2-chemoreceptor interaction in the control of avian respiration. Respir. Physiol. 33, 349 - 357. (doi:10.1016/0034-5687(78)90061-0)
    • 12. Calder WA, Schmidt-Nielsen K. 1968 Panting and blood carbon dioxide in birds. Am. J. Physiol. 215, 477 - 482.
    • 13. Arieli R, Ar A, Shkolnik A. 1977 Metabolic responses of a fossorial rodent (Spalax ehrenbergi) to simulated burrow conditions. Physiol. Zool. 50, 61 - 75. (doi:10.1086/physzool.50.1.30155716)
    • 14. Ar A, Arieli R, Shkolnik A. 1977 Blood-gas properties and function in the fossorial mole rat under normal and hypoxic - hypercapnic atmospheric conditions. Respir. Physiol. 30, 201 - 219. (doi:10.1016/0034- 5687(77)90031-7)
    • 15. Arieli R, Ar A. 1979 Ventilation of a fossorial mammal (Spalax ehrenbergi) in hypoxic and hypercapnic conditions. J. Appl. Physiol. 47, 1011 - 1017.
    • 16. Nei M, Glazko GV. 2002 The Wilhelmine E. Key 2001 Invitational Lecture. Estimation of divergence times for a few mammalian and several primate species. J. Hered. 93, 157 - 164. (doi:10.1093/jhered/93.3.157)
    • 17. Lewis KN, Soifer I, Melamud E, Roy M, McIsaac RS, Hibbs M, Buffenstein R. 2016 Unraveling the message: insights into comparative genomics of the naked mole-rat. Mamm. Genome 27, 259 - 278. (doi:10.1007/s00335-016-9648-5)
    • 18. Pepelko WE, Dixon GA. 1975 Arterial blood gases in conscious rats exposed to hypoxia, hypercapnia, or both. J. Appl. Physiol. 38, 581 - 587.
    • 19. Meigh L, Cook D, Zhang J, Dale N. 2015 Rational design of new NO and redox sensitivity into connexin26 hemichannels. Open Biol. 5, 140208. (doi:10.1098/rsob.140208)
    • 20. de Wolf E, van de Wiel J, Cook J, Dale N. 2016 Altered CO2 sensitivity of connexin26 mutant hemichannels in vitro. Physiol Rep. 4, e13038. (doi:10.14814/phy2.13038)
    • 21. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 - 675. (doi:10.1038/nmeth.2089)
    • 22. Curran-Everett D. 2000 Multiple comparisons: philosophies and illustrations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1 - R8.
    • 23. Storz JF, Moriyama H. 2008 Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt. Med. Biol. 9, 148 - 157. (doi:10.1089/ham.2007.1079)
    • 24. Campbell JA. 1931 Gas tensions in the tissues. Physiol. Rev. 11, 1 - 40.
    • 25. Lazic T, Horii KA, Richard G, Wasserman DI, Antaya RJ. 2008 A report of GJB2 (N14 K) Connexin 26 mutation in two patients-a new subtype of KID syndrome? Pediatr. Dermatol. 25, 535 - 540. (doi:10. 1111/j.1525-1470.2008.00767.x)
    • 26. Arita K et al. 2006 A novel N14Y mutation in connexin26 in keratitis - ichthyosis - deafness syndrome: analyses of altered gap junctional communication and molecular structure of N terminus of mutated connexin26. Am. J. Pathol. 169, 416 - 423. (doi:10.2353/ajpath.2006.051242)
    • 27. Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T. 2009 Structure of the connexin 26 gap junction channel at 3.5 A˚ resolution. Nature 458, 597 - 602. (doi:10.1038/ nature07869)
    • 28. Bennett BC et al. 2016 An electrostatic mechanism for Ca2þ-mediated regulation of gap junction channels. Nat. Commun. 7, 8770. (doi:10.1038/ncomms9770)
    • 29. Taylor EW, Leite CA, McKenzie DJ, Wang T. 2010 Control of respiration in fish, amphibians and reptiles. Braz. J. Med. Biol. Res. 43, 409 - 424. (doi:10.1590/S0100-879X2010007500025)
    • 30. Perry SF, Vulesevic B, Braun M, Gilmour KM. 2009 Ventilation in Pacific hagfish (Eptatretus stoutii) during exposure to acute hypoxia or hypercapnia. Respir. Physiol. Neurobiol. 167, 227 - 234. (doi:10. 1016/j.resp.2009.04.025)
    • 31. Milsom WK. 2002 Phylogeny of CO2/Hþ chemoreception in vertebrates. Respir. Physiol. Neurobiol. 131, 29 - 41. (doi:10.1016/S1569- 9048(02)00035-6)
    • 32. Milsom WK. 2010 The phylogeny of central chemoreception. Respir. Physiol. Neurobiol. 173, 195 - 200. (doi:10.1016/j.resp.2010.05.022)
    • 33. Amin-Naves J, Giusti H, Hoffmann A, Glass ML. 2007 Components to the acid - base related ventilatory drives in the South American lungfish Lepidosiren paradoxa. Respir. Physiol. Neurobiol. 155, 35 - 40. (doi:10.1016/j.resp.2006.03.003)
    • 34. Amin-Naves J, Giusti H, Hoffmann A, Glass ML. 2007 Central ventilatory control in the South American lungfish, Lepidosiren paradoxa: contributions of pH and CO2. J. Comp. Physiol. B 177, 529 - 534. (doi:10. 1007/s00360-007-0151-x)
    • 35. Cruciani V, Mikalsen SO. 2006 The vertebrate connexin family. Cell. Mol. Life Sci. 63, 1125 - 1140. (doi:10.1007/s00018-005-5571-8)
    • 36. Hallem EA, Sternberg PW. 2008 Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 105, 8038 - 8043. (doi:10.1073/ pnas.0707469105)
    • 37. Hallem EA et al. 2011 Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 254 - 259. (doi:10.1073/pnas. 1017354108)
    • 38. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. 2007 Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86 - 90. (doi:10.1038/nature05466)
    • 39. Shestopalov VI, Panchin Y. 2008 Pannexins and gap junction protein diversity. Cell. Mol. Life Sci. 65, 376 - 394. (doi:10.1007/s00018-007- 7200-1)
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
  • No similar publications.

Share - Bookmark

Cite this article