Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tai, Hui-Chung; Brodbeck, Ralf; Kasparkova, Jana; Farrer, Nicola J.; Brabec, V. (Viktor); Sadler, P. J.; Deeth, Robert J. (2012)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD, QP
Molecular modeling and extensive experimental studies are used to study DNA distortions induced by binding platinum(II)-containing fragments derived from cisplatin and a new class of photoactive platinum anticancer drugs. The major photoproduct of the novel platinum(IV) prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (1) contains the trans-{Pt(py)2}2+ moiety. Using a tailored DNA sequence, experimental studies establish the possibility of interstrand binding of trans-{Pt(py)2}2+ (P) to guanine N7 positions on each DNA strand. Ligand field molecular mechanics (LFMM) parameters for Pt–guanine interactions are then derived and validated against a range of experimental structures from the Cambridge Structural Database, published quantum mechanics (QM)/molecular mechanics (MM) structures of model Pt–DNA systems and additional density-functional theory (DFT) studies. Ligand field molecular dynamics (LFMD) simulation protocols are developed and validated using experimentally characterized bifunctional DNA adducts involving both an intra- and an interstrand cross-link of cisplatin. We then turn to the interaction of P with the DNA duplex dodecamer, d(5′-C1C2T3C4T5C6G7T8C9T10C11C12-3′)·d(5′-G13G14A15G16A17C18G19A20G21A22G23G24-3′) which is known to form a monofunctional adduct with cis-{Pt(NH3)2(py)}. P coordinated to G7 and G19 is simulated giving a predicted bend toward the minor groove. This is widened at one end of the platinated site and deepened at the opposite end, while the P–DNA complex exhibits a global bend of 67° and an unwinding of 20°. Such cross-links offer possibilities for specific protein–DNA interactions and suggest possible mechanisms to explain the high potency of this photoactivated complex.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (3) Blindauer, C. A.; Harvey, I.; Bunyan, K. E.; Stewart, A. J.; Sleep, D.; Harrison, D. J.; Berezenko, S.; Sadler, P. J. J. Biol. Chem. 2009, 284, 23116.
    • Wong, E.; Giandomenico, C. Chem. Rev. 1999, 99, 2451.
    • Kelland, L. Nat. Rev. Cancer 2007, 7, 573.
    • Deubel, D. V.; Lau, J. K. C. Chem. Commun. 2006, 2451.
    • Reedijk, J. Platinum Met. Rev. 2008, 52, 2.
    • Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467.
    • Baik, M. H.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14082.
    • Mantri, Y.; Lippard, S. J.; Baik, M. H. J. Am. Chem. Soc. 2007, 129, 5023.
    • Deubel, D. V. J. Am. Chem. Soc. 2006, 128, 1654.
    • Reedijk, J. Chem. Rev. 1999, 99, 2499.
    • Jung, Y.; Lippard, S. J. Chem. Rev. 2007, 107, 1387.
    • Fuertes, M.; Alonso, C.; Perez, J. Chem. Rev. 2003, 103, 645.
    • Bradley, L. J. N.; Yarema, K. J.; Lippard, S. J.; Essigmann, J. M. Biochemistry 1993, 32, 982.
    • Gelasco, A.; Lippard, S. J. Biochemistry 1998, 37, 9230.
    • Elizondo-Riojas, M. A.; Kozelka, J. J. Mol. Biol. 2001, 314, 1227.
    • Zhu, Y. Y.; Wang, Y.; Chen, G. J. Nucleic Acids Res. 2009, 37, 5930.
    • Teletchea, S.; Skauge, T.; Sletten, E.; Kozelka, J. Chem. Eur. J. 2009, 15, 12320.
    • Burton, V. J.; Deeth, R. J.; Kemp, C. M.; Gilbert, P. J. J. Am. Chem. Soc. 1995, 117, 8407.
    • Deeth, R. J. Coord. Chem. Rev. 2001, 212, 11.
    • Deeth, R.; Anastasi, A.; Diedrich, C.; Randell, K. Coord. Chem. Rev. 2009, 253, 795.
    • (34) Piquemal, J. P.; Williams-Hubbard, B.; Fey, N.; Deeth, R. J.; Gresh, N.; Giessner-Prettre, C. J. Comput. Chem. 2003, 24, 1963.
    • Woodley, S. M.; Battle, P. D.; Catlow, C. R. A.; Gale, J. D. J. Phys. Chem. B 2001, 105, 6824.
    • Deeth, R. J. Chem. Commun. 2006, 2551.
    • Chval, Z.; Sip, M. J. Phys. Chem. B 1998, 102, 1659.
    • Anastasi, A.; Deeth, R. J. J. Chem. Theory. Comput. 2009, 5, 2339.
    • Noll, D. M.; Mason, T. M.; Miller, P. S. Chem. Rev. 2006, 106, 277.
    • Becke, A. Phys. Rev. A 1988, 38, 3098.
    • Perdew, J. Phys. Rev. B 1986, 33, 8822.
    • Grimme, S. J. Comp. Chem. 2004, 25, 1463.
    • van Lenthe, E.; Ehlers, A.; Baerends, E. J. Chem. Phys. 1999, 110, 8943.
    • Chirlian, L. E.; Francl, M. M. J. Comput. Chem. 1987, 8, 894.
    • (40) E.J. Baerends, et al. Amsterdam Density Functional 2007.01, SCM, Vrije Universiteit, Amsterdam, The Netherlands: Amsterdam, 2007.
    • (63) Lovejoy, K. S.; Todd, R. C.; Zhang, S. Z.; McCormick, M. S.; D'Aquino, J. A.; Reardon, J. T.; Sancar, A.; Giacomini, K. M.; Lippard, S. J. Proc. Natl. Acad. Sci. USA 2008, 105, 8902.
    • Brabec, V.; Reedijk, J.; Leng, M. Biochemistry 1992, 31, 12397.
    • Kasparkova, J.; Zehnulova, J.; Farrell, N.; Brabec, V. J. Biol. Chem. 2002, 277, 48076.
    • (66) Kasparkova, J.; Novakova, O.; Marini, V.; Najajreh, Y.; Gibson, D.; Perez, J.-M.; Brabec, V. J. Biol. Chem. 2003, 278, 47516.
    • (67) Leng, M.; Locker, D.; Giraud-Panis, M. J.; Schwartz, A.; Intini, F. P.; Natile, G.; Pisano, C.; Boccarelli, A.; Giordano, D.; Coluccia, M. Mol. Pharmacol. 2000, 58, 1525.
    • Comess, K. M.; Costello, C. E.; Lippard, S. J. Biochemistry 1990, 29, 2102.
    • Lemaire, M. A.; Schwartz, A.; Rahmouni, A. R.; Leng, M. Proc. Natl. Acad. Sci. USA 1991, 88, 1982.
    • Brabec, V.; Leng, M. Proc. Natl. Acad. Sci. USA 1993, 90, 5345.
    • Kasparkova, J.; Mellish, K. J.; Qu, Y.; Brabec, V.; Farrell, N. Biochemistry 1996, 35, 16705.
    • (72) Zakovska, A.; Novakova, O.; Balcarova, Z.; Bierbach, U.; Farrell, N.; Brabec, V. Eur. J. Biochem. 1998, 254, 547.
    • Brabec, V.; Neplechova, K.; Kasparkova, J.; Farrell, N. J. Biol. Inorg. Chem. 2000, 5, 364.
    • Bancroft, D. P.; Lepre, C. A.; Lippard, S. J. J. Am. Chem. Soc. 1990, 112, 6860.
    • (75) Draganescu, A.; Tullius, T. D. In Met. Ions Biol. Syst.; Sigel, A., Sigel, H., Eds.; Marcel Dekker, Inc.: New York, 1996; Vol. 33, p 453.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    1a2eProtein Data Bank
    1a84Protein Data Bank
    3co3Protein Data Bank

Share - Bookmark

Funded by projects


Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok