Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: MSP
Languages: English
Types: Article
Subjects: QA

Classified by OpenAIRE into

arxiv: Mathematics::Representation Theory, Mathematics::Number Theory
We present a unified parametrisation of ℓ-blocks of quasi-simple finite groups of Lie type in non-defining characteristic via Lusztig's induction functor in terms of e-Jordan-cuspidal pairs and e-Jordan quasi-central cuspidal pairs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C. Bonnafe´, Quasi-isolated elements in reductive groups. Comm. Algebra 33 (2005), 2315-2337.
    • [2] C. Bonnafe´, Sur les caract`eres des groupes r´eductifs finis a centre non connexe : applications aux groupes sp´eciaux lin´eaires et unitaires. Ast´erisque 306 (2006).
    • [3] C. Bonnafe´, J. Michel, Computational proof of the Mackey formula for q > 2. J. Algebra 327 (2011), 506-526.
    • [4] C. Bonnafe´, R. Rouquier, Cat´egories d´eriv´ees et vari´et´es de Deligne-Lusztig. Publ. Math. Inst. Hautes E´tudes Sci. No. 97 (2003), 1-59.
    • [5] M. Broue´, Isom´etries parfaites, types de blocs, cat´egories d´eriv´ees. Ast´erisque 181-182 (1990), 61-92.
    • [6] M. Broue´, G. Malle, J. Michel, Generic blocks of finite reductive groups. Ast´erisque No. 212 (1993), 7-92.
    • [7] M. Cabanes, Unicit´e du sous-groupe ab´elian distingu´e maximal dans certains sous-groupes de Sylow. C. R. Acad. Sci. Paris 318 (1994), 889-894.
    • [8] M. Cabanes, M. Enguehard, Unipotent blocks of finite reductive groups of a given type. Math. Z. 213 (1993), 479-490.
    • [9] M. Cabanes, M. Enguehard, On unipotent blocks and their ordinary characters. Invent. Math. 117 (1994), 149-164.
    • [10] M. Cabanes, M. Enguehard, On blocks of finite reductive groups and twisted induction. Adv. Math. 145 (1999), 189-229.
    • [11] F. Digne, J. Michel, Representations of Finite Groups of Lie Type. LMS Student Texts, 21. Cambridge University Press, Cambridge, 1991.
    • [12] M. Enguehard, Sur les l-blocs unipotents des groupes r´eductifs finis quand l est mauvais. J. Algebra 230 (2000), 334-377.
    • [13] M. Enguehard, Vers une d´ecomposition de Jordan des blocs des groupes r´eductifs finis. J. Algebra 319 (2008), 1035-1115.
    • [14] R. Kessar, G. Malle, Quasi-isolated blocks and Brauer's height zero conjecture. Annals of Math. 178 (2013), 321-384.
    • [15] F. Lu¨beck, Table at http://www.math.rwth-aachen.de/˜Frank.Luebeck/chev/index.html
    • [16] G. Malle, D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Studies in Advanced Mathematics, 133, Cambridge University Press, Cambridge, 2011.
    • [17] H. Nagao, Y. Tsushima, Representations of Finite Groups. Academic Press, Boston, 1989. Department of Mathematical Sciences, City University London, Northampton Square, London EC1V 01B, U.K. E-mail address: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany. E-mail address:
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects


Cite this article