LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: ACM
Languages: English
Types: Unknown
Subjects: QA76

Classified by OpenAIRE into

ACM Ref: MathematicsofComputing_DISCRETEMATHEMATICS
Many data analysis tasks rely on the abstraction of a graph to represent relations between entities, with attributes on the nodes and edges. Since the relationships encoded are often sensitive, we seek effective ways to release representative graphs which nevertheless protect the privacy of the data subjects. Prior work on this topic has focused primarily on the graph structure in isolation, and has not provided ways to handle richer graphs with correlated attributes.\ud \ud We introduce an approach to release such graphs under the strong guarantee of differential privacy. We adapt existing graph models, and introduce a new one, and show how to augment them with meaningful privacy. This provides a complete workflow, where the input is a sensitive graph, and the output is a realistic synthetic graph. Our experimental study demonstrates that our process produces useful, accurate attributed graphs.

Share - Bookmark

Funded by projects

  • EC | DAPPER

Cite this article