Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rajendiran, S.; Rossall, A.K.; Gibson, A.; Wagenaars, E. (2014)
Publisher: Elsevier BV
Journal: Surface and Coatings Technology
Languages: English
Types: Article
Subjects: Chemistry(all), QC, 1600, 3104, Condensed Matter Physics, Surfaces, Coatings and Films, Surfaces and Interfaces, 3110, Materials Chemistry, 2508, 2505
Pulsed laser deposition (PLD) in a low-pressure oxygen atmosphere is commonly used for the production of high-quality, stoichiometric zinc oxide thin films. An alternative approach that has the potential benefit of increased process control is plasma-enhanced PLD, i.e. the use of a low-temperature oxygen plasma instead of a neutral gas. So far, the development of PE-PLD, and PLD in general, has been hampered by a lack of detailed understanding of the underpinning physics and chemistry. In this paper, we present modelling investigations aimed at further developing such understanding. Two-dimensional modelling of an inductively-coupled radio-frequency oxygen plasma showed that densities of 1014-1015 cm- 3 of reactive oxygen species O and O2* can be produced for operating pressures between 3 and 100 Pa. Together with the absolute densities of species, also the ratio between different reactive species, e.g. O and O2*, can be controlled by changing the operating pressure. Both can be used to find the optimum conditions for stoichiometric zinc oxide thin film deposition. Additionally, we investigated laser ablation of zinc using a different two-dimensional hydrodynamic code (POLLUX). This showed that the amount of material that is ablated increases from 2.9 to 4.7 μg per pulse for laser fluences from 2 to 10 J/cm2. However, the increased laser fluence also results in an increased average ionisation of the plasma plume, from 3.4 to 5.6 over the same fluence range, which is likely to influence the chemistry near the deposition substrate and consequently the film quality. © 2014 The Authors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Ya.I. Özgür, C. Alivov, A. Liu, M.A. Teke, S. Reshchikov, V. Dogăn, S.-J. Avrutin, H. Cho, A. Morkoc, J. Appl. Phys. 98 (2005) 041301.
    • [2] C. Klingshirn, Phys. Status Solidi B 244 (2007) 3027-3073.
    • [3] D.C. Look, Mater. Sci. Eng. B 80 (2001) 383-387.
    • [4] J.-J. Chen, X.-R. Deng, H. Deng, J. Mater. Sci. 48 (2013) 532-542.
    • [5] A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20 (2005) S1-S12.
    • [6] M. Opel, S. Geprägs, M. Althammer, T. Brenninger, R. Gross, J. Phys. D. Appl. Phys. 47 (2014) 034002.
    • [7] S.S. Kim, B.-T. Lee, Thin Solid Films 446 (2004) 307-312.
    • [8] S.-H. Huang, Y.-C. Chou, C.-M. Chou, V.K.S. Hsiao, Appl. Surf. Sci. 226 (2013) 194-198.
    • [9] N. Scarisoreanu, D.G. Matei, G. Dinescu, G. Epurescu, C. Ghica, L.C. Nistor, M. Dinescu, Appl. Surf. Sci. 247 (2005) 518-525.
    • [10] L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Cryst. Growth 277 (2005) 26-31.
    • [11] P.J. Hargis Jr., K.E. Greenberg, P.A. Miller, J.B. Gerardo, J.R. Torczynski, M.E. Riley, G.A. Hebner, J.R. Roberts, J.K. Olthoff, J.R. Whetstone, R.J. Van Brunt, M.A. Sobolewski, H. M. Anderson, M.P. Splichal, J.L. Mock, P. Bletzinger, A. Garscadden, R.A. Gottscho, G. Selwyn, M. Dalvie, J.E. Heidenreich, Jeffery W. Butterbaugh, M.L. Brake, M.L. Passow, J. Pender, A. Lujan, M.E. Elta, D.B. Graves, H.H. Sawin, M.J. Kushner, J.T. Verdeyen, R. Horwath, T.R. Turner, Rev. Sci. Instrum. 65 (1994) 140-154.
    • [12] P.A. Miller, G.A. Hebner, K.E. Greenberg, P.D. Pochan, B.P. Aragon, J. Res. Nat. Inst. Stand. Technol. 100 (1995) 427-439.
    • [13] www.quantemol.com/products/quantemol-vt/ (Quantemol Ltd., London, United Kingdom).
    • [14] M.J. Kushner, J. Phys. D. Appl. Phys. 42 (2009) 194013.
    • [15] S. Tinck, A. Bogaerts, Plasma Sources Sci. Technol. 20 (2011) 015008.
    • [16] A.V. Phelps, JILA data center report, 28 (1985) 1.
    • [17] D.S. Stafford, M.J. Kushner, J. Appl. Phys. 96 (2004) 2451-2465.
    • [18] J.T. Gudmundsson, I.G. Kouznetsov, K.K. Patel, M.A. Lieberman, J. Phys. D. Appl. Phys. 34 (2001) 1100-1109.
    • [19] S. Gomez, P.G. Steen, W.G. Graham, Appl. Phys. Lett. 81 (2002) 19-21.
    • [20] M.S. Qaisar, G.J. Pert, J. Appl. Phys. 94 (2003) 1468-1477.
    • [21] G.J. Pert, J. Plasma Phys. 41 (1989) 263.
    • [22] S.L. Thomson, H.S. Lauson, Improvements in the Chart-D radiation hydrodynamic code, Sandia Labs Reports SC-RR-71 0714, 1972.
    • [23] R. Latter, Phys. Rev. 99 (1955) 1854.
    • [24] S. Blackwell, R. Smith, S.D. Kenny, J.M. Walls, C.F. Sanz-Navarro, J. Phys. Condens. Matter 25 (2013) 135002.
    • [25] R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83 (1998) 1087.
    • [26] J. Jie, A. Morita, H. Shirai, J. Appl. Phys. 108 (2010) 033521.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article