Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hodkin, DJ; Stewart, DI; Graham, JT; Burke, IT (2016)
Publisher: Elsevier
Journal: Science of The Total Environment
Languages: English
Types: Article
Subjects: Waste Management and Disposal, Environmental Engineering, Pollution, Environmental Chemistry
This study investigated the simultaneous removal of Sr2+ and 14CO32- from an alkaline (pH >12) Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca2+:CO32- ratios ranged from 10:1 to 10:100 (mM: mM). Maximum removal of 14C and Sr2+ both occurred in the system containing 10 mM Ca2+ and 1 mM CO32- (99.7% and 98.6% removal, respectively). A kinetic model is provided that describes 14C and Sr removal in terms of mineral dissolution & precipitation reactions. The removal of 14C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of a calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the 14C back to solution. Sr2+ removal occurred as Ca2+ became depleted in solution and was not significantly affected by the recrystallization process. This reaction could form the basis for low cost remediation scheme for 90Sr and 14C in radioactively contaminated waters (<$0.25 reagent cost per m3 treated).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Achal, V., Pan, X., Zhang, D., 2012. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere 89, 764-768. http://dx.doi.org/10.1016/j.chemosphere.2012.06.064.
    • Amiro, B.D., Ewing, L.L., 1992. Physiological conditions and uptake of inorganic carbon-14 by plant roots. Environ. Exp. Bot. 32, 203-211. http://dx.doi.org/10.1016/0098- 8472(92)90003-K.
    • Aquilonius, K., Hallberg, B., 2005. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant. J. Environ. Radioact. 82, 267-283. http://dx.doi.org/10.1016/j.jenvrad.2004.11.009.
    • Atkins, P., De Paula, J., 2006. Atkins' Physical Chemistry New York WH Freman.
    • Barton, C.S., Stewart, D.I., Morris, K., Bryant, D.E., 2004. Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB. J. Hazard. Mater. 116, 191-204. http://dx.doi.org/10.1016/j.jhazmat.2004.08.028.
    • Bots, P., Benning, L.G., Rickaby, R.E.M., Shaw, S., 2011. The role of SO4 in the switch from calcite to aragonite seas. Geology 39, 331-334.
    • Boylan, A.A., Stewart, D.I., Graham, J.T., Trivedi, D., Burke, I.T., n.d. Mechanisms of inorganic carbon-14 attenuation in contaminated groundwater: effect of solution pH on isotopic exchange and carbonate precipitation reactions.
    • Clark, I.D., Fontes, J.-C., Fritz, P., 1992. Stable isotope disequilibria in travertine from high pH waters: laboratory investigations and field observations from Oman. Geochim. Cosmochim. Acta 56, 2041-2050.
    • Cross, J.E., Ewart, F.T., 1991. HATCHES-a thermodynamic database and management system. Radiochim. Acta 52, 421-422.
    • Curti, E., 1997. Coprecipitation of Radionuclides: Basic Concepts, Literature Review and First applications. Paul Scherrer Institut.
    • Dias, C.M., Stenström, K., Bacelar Leão, I.L., Santos, R.V., Nícoli, I.G., Skog, G., Ekström, P., da Silveira Corrêa, R., 2009. 14CO2 dispersion around two PWR nuclear power plants in Brazil. J. Environ. Radioact. 100, 574-580. http://dx.doi.org/10.1016/j.jenvrad.2009. 03.022.
    • Fernández-Díaz, L., Fernández-González, Á., Prieto, M., 2010. The role of sulfate groups in controlling CaCO3 polymorphism. Geochim. Cosmochim. Acta 74, 6064-6076.
    • Fujita, Y., Ferris, F.G., Lawson, R.D., Colwell, F.S., Smith, R.W., 2000. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J. 17, 305-318.
    • Gebauer, D., Völkel, A., Cölfen, H., 2008. Stable prenucleation calcium carbonate clusters. Science 322, 1819-1822 (80-.).
    • Graham, J., 2013. ERT trial groundwater analysis - rounds 16-19. NNL Technical Memorandum LP06489/06/10/07.
    • Gray, J., Jones, S.R., Smith, A.D., 1995. Discharges to the environment from the Sellafield site, 1951-1992. J. Radiol. Prot. 15, 99-131.
    • Hall, O.J., Aller, R.C., 1992. Rapid, small-volume, flow injection analysis for ΣCO2 and NH4+ in marine and fresh waters. Limnol. Oceanogr. 37, 1113-1119.
    • Holland, H.D., Holland, H.J., Munoz, J.L., 1964. The coprecipitation of cations with CaCO3-II. the coprecipitation of Sr+2 with calcite between 90° and 100 °C. Geochim. Cosmochim. Acta 28, 1287-1301.
    • Inskeep, W.P., Bloom, P.R., 1985. An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochim. Cosmochim. Acta 49, 2165-2180.
    • Johannsen, K., Rademacher, S., 1999. Modelling the kinetics of calcium hydroxide dissolution in Water. Acta Hydrochim. Hydrobiol. 27, 72-78.
    • Jung, W.M., Kang, S.H., Kim, W.-S., Choi, C.K., 2000. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor. Chem. Eng. Sci. 55, 733-747.
    • Katz, A., Sass, E., Starinsky, A., Holland, H.D., 1972. Strontium behavior in the aragonitecalcite transformation: an experimental study at 40-98 °C. Geochim. Cosmochim. Acta 36, 481-496.
    • Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L., 1999. Migration of plutonium in ground water at the Nevada test site. Nature 397, 56-59.
    • Laker, A., Ashton, C., Cummings, R., 2010. Waste Acceptance Criteria - Low Level Waste Disposal.
    • Lide, D.R., 2001. CRC Handbook of Physics and Chemistry. CRC.
    • Magnusson, Å., Stenström, K., Adliene, D., Adlys, G., Dias, C., Rääf, C., Skog, G., Zakaria, M., Mattsson, S., 2007. Carbon-14 levels in the vicinity of the Lithuanian nuclear power plant Ignalina. Nucl. Instrum. Methods Phys. Res., Sect. B 259, 530-535. http://dx. doi.org/10.1016/j.nimb.2007.01.197.
    • Marinin, D.V., Brown, G.N., 2000. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manag. 20, 545-553.
    • Mayes, W.M., Batty, L.C., Younger, P.L., Jarvis, A.P., Kõiv, M., Vohla, C., Mander, U., 2009. Wetland treatment at extremes of pH: a review. Sci. Total Environ. 407, 3944-3957. http://dx.doi.org/10.1016/j.scitotenv.2008.06.045.
    • Mitchell, A.C., Ferris, F.G., 2005. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: temperature and kinetic dependence. Geochim. Cosmochim. Acta 69, 4199-4210.
    • Naftz, D., Morrison, S.J., Fuller, C.C., Davis, J.A., 2002. Handbook of Groundwater Remediation Using Permeable Reactive Barriers: Applications to Radionuclides, Trace Metals, and Nutrients. Academic Press.
    • Nancollas, G.H., Reddy, M.M., 1971. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci. 37, 824-830.
    • NDA, 2013. 5 year Research and Development Plan.
    • Nielsen, S., 2004. The Biological Role of Strontium Bone.
    • Nielsen, M.H., Aloni, S., De Yoreo, J.J., 2014. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158-1162 (80-.).
    • Noyes, R.M., Rubin, M.B., Bowers, P.G., 1996. Transport of carbon dioxide between the gas phase and water under well-stirred conditions: rate constants and mass accommodation coefficients. J. Phys. Chem. 100, 4167-4172.
    • Ostwald, W., 1897. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289-330.
    • Palmisano, A., Hazen, T., 2003. Bioremediation of Metals and Radionuclides: What it is and How it Works.
    • Parkhurst, D.L., Appelo, C.A.J., 1999. User's guide to PHREEQC (Version 2): A Computer Program for sPeciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations.
    • Parkhurst, D.L., Appelo, C.A.J., 2013. Description of Input and Examples for PHREEQC Version 3: A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations.
    • Parkman, R.H., Charnock, J.M., Livens, F.R., Vaughan, D.J., 1998. A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite. Geochim. Cosmochim. Acta 62, 1481-1492.
    • Pingitore Jr., N.E., Lytle, F.W., Davies, B.M., Eastman, M.P., Eller, P.G., Larson, E.M., 1992. Mode of incorporation of Sr2+ in calcite: Determination by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 56, 1531-1538.
    • Pinsent, B.R.W., Pearson, L., Roughton, Fjw, 1956. The kinetics of combination of carbon dioxide with hydroxide ions. Trans. Faraday Soc. 52, 1512-1520.
    • Rietveld, H., 1969. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65-71.
    • Roehl, K.E., Meggyes, T., Simon, F.G., Stewart, D.I., 2005. Long-term Performance of Permeable Reactive Barriers. Gulf Professional Publishing.
    • Roussel-Debet, S., Gontier, G., Siclet, F., Fournier, M., 2006. Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. J. Environ. Radioact. 87, 246-259. http://dx.doi.org/10.1016/j.jenvrad.2005.12.002.
    • Sander, R., 2015. Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys.
    • Saunders, J.A., Toran, L.E., 1995. Modeling of radionuclide and heavy metal sorption around low- and high-pH waste disposal sites at Oak Ridge, Tennessee. Appl. Geochem. 10, 673-684. http://dx.doi.org/10.1016/0883-2927(95)00036-4.
    • Stamper, A., Coughlin, D., Bowes, A., Ruddick, P., Laws, F., 2014. Groundwater Monitoring at Sellafield Annual Data Review. p. 2013.
    • Standring, W.J.F., Oughton, D.H., Salbu, B., 2002. Potential remobilization of 137 Cs, 60 Co, 99 Tc, and 90 Sr from contaminated Mayak sediments in river and estuary environments. Environ. Sci. Technol. 36, 2330-2337. http://dx.doi.org/10.1021/es0103187.
    • Stewart, D., Csõvári, M., Barton, C., Morris, K., 2006. Performance of a Functionalised Polymer-coated Silica at treating uranium contaminated groundwater from a Hungarian Mine site. Eng. Geol. 85, 174-183.
    • Thompson, A., Steefel, C., 2010. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments. Sci. Technol. 44, 1992-1997.
    • Tierney, K.M., Muir, G.K.P., Cook, G.T., MacKinnon, G., Howe, J.A., Heymans, J.J., Xu, S., 2016. Accumulation of Sellafield-derived radiocarbon ((14)C) in Irish Sea and West of Scotland intertidal shells and sediments. J. Environ. Radioact. 151 (Pt 1), 321-327. http://dx.doi.org/10.1016/j.jenvrad.2015.10.029.
    • Zhang, Y., Dawe, R.A., 2000. Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem. Geol. 163, 129-138.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article