LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: QB, QC, Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Solar and Stellar Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics
We have obtained multi-epoch, high-resolution spectroscopy of 218 candidate low-mass stars and brown dwarfs in the young clusters around sigma Ori and lambda Ori. We find that 196 targets are cluster members based on their radial velocity, the equivalent width of their NaI 8200 lines and the spectral type from their TiO band strength. We have identified 11 new binary stars among the cluster members based on their variable radial velocity and an additional binary from the variation in its line width and shape. The sample covers the magnitude range Ic=14-18.9 (mass =~ 0.55-0.03 Msun), but all of the binary stars are brighter than Ic=16.6 (mass =~ 0.12Msun) and 10 are brighter than Ic=15.5 (mass =~ 0.23Msun). There is a significant lack of spectroscopic binaries in our sample at faint magnitudes even when we account for the decrease in sensitivity with increasing magnitude. We can reject the hypothesis that the fraction of spectroscopic binaries is a uniform function of Ic magnitude with more than 99% confidence. The spectroscopic binary fraction for stars more massive than about 0.1Msun (Ic < 16.9) is f_bright=0.095(+0.012)(-0.028). The 90% confidence upper limit to the spectroscopic binary fraction for very low mass (VLM) stars (mass < 0.1Msun) and brown dwarfs (BDs) is f_faint < 7.5%. The hypothesis that f_bright and f_faint are equal can be rejected with 90% confidence. We conclude that we have found strong evidence for a change in the fraction of spectroscopic binaries among young VLM stars and brown dwarfs when compared to more massive stars in the same star-forming region. This implies a difference in the total binary fraction between VLM stars and BDs compared to more massive stars or a difference in the distribution of semi-major axes, or both. (Abridged)
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article