LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
Subjects:
Pastes of white Portland cement (wPc) and wPc-pulverized fuel ash (pfa) blends were studied up to 13 years. The reaction of wPc with water was initially retarded in the presence of pfa particles but accelerated at intermediate ages. Reaction with KOH solution was rapid with or without pfa. A universal compositional relationship exists for the C-A-S-H in blends of Pc with aluminosilicate-rich SCMs. The average length of aluminosilicate anions increased with age and increasing Al/Ca and Si/Ca; greater lengthening in the blends was due to additional Al3+ at bridging sites. The morphology of outer product C-A-S-H was always foil-like with KOH solution, regardless of chemical composition, but with water it had fibrillar morphology at high Ca/(Si+Al) ratios and foil-like morphology started to appear at Ca/(Si+Al) ≈1.2-1.3, which from the literature appears to coincide with changes in the pore solution. Foil-like morphology cannot be associated with entirely T-based structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] H.F.W. Taylor, The Chemistry of Cements, 1Academic Press, London, 1964.
    • [2] J.F. Young, W. Hansen, Volume relationships for C-S-H formation based on hydration stoichiometries, Mater. Res. Soc. Symp. Proc. 85 (1987) 313-322.
    • [3] I.G. Richardson, G.W. Groves, The microstructure and microanalysis of hardened ordinary Portland cement pastes, J. Mater. Sci. 28 (1993) 265-277.
    • [4] I.G. Richardson, The nature of the hydration products in hardened cement pastes, Cem. Concr. Comp. 22 (2000) 97-113.
    • [5] H.F.W. Taylor, Cement Chemistry, second ed. Thomas Telford, London, 1997.
    • [6] I.G. Richardson, G.W. Groves, The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast-furnace slag blends, J. Mater. Sci. 32 (1997) 4793-4802.
    • [7] I.G. Richardson, G.W. Groves, The microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag, J. Mater. Sci. 27 (1992) 6204-6212.
    • [8] I.G. Richardson, The structure of C-S-H in hardened slag cement pastes, Proc. 10th Int. Cong. Chem. Cem., 2, Göteborg 1997, p. 2ii068 (8pp).
    • [9] R. Taylor, I.G. Richardson, R.M.D. Brydson, Composition and microstructure of 20- year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag, Cem. Concr. Res. 40 (2010) 971-983.
    • [10] I.G. Richardson, S.A. Rodger, G.W. Groves, The microstructure of ggbfs/OPC hardened cement pastes and some effects of leaching, Mater. Res. Soc. Symp. Proc. 176 (1990) 63-74.
    • [11] L.S. Dent-Glasser, E.E. Lachowski, M.Y. Qureshi, H.P. Calhoun, D.J. Embree, W.D. Jamieson, C.R. Masson, Identification of some of the polysilicate components of trimethylsilylated cement paste, Cem. Concr. Res. 11 (1981) 775-780.
    • [12] K. Mohan, H.F.W. Taylor, A trimethylsilylation study of tricalcium silicate pastes, Cem. Concr. Res. 12 (1982) 25-31.
    • [13] J. Hirljac, Z.-Q. Wu, J.F. Young, Silicate polymerization during the hydration of alite, Cem. Concr. Res. 13 (1983) 877-886.
    • [14] I.G. Richardson, The nature of C-S-H in hardened cements, Cem. Concr. Res. 29 (1999) 1131-1147.
    • [15] H.F.W. Taylor, Proposed structure for calcium silicate hydrate gel, J. Am. Ceram. Soc. 69 (1986) 464-467.
    • [16] I.G. Richardson, G.W. Groves, Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes, Cem. Concr. Res. 22 (1992) 1001-1010.
    • [17] I.G. Richardson, G.W. Groves, The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes, Cem. Concr. Res. 23 (1993) 131-138.
    • [18] I.G. Richardson, A.R. Brough, R.M.D. Brydson, G.W. Groves, C.M. Dobson, The location of aluminium in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS, J. Am. Ceram. Soc. 76 (1993) 2285-2288.
    • [19] M.D. Andersen, H.J. Jakobsen, J. Skibsted, Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field Al-27 and Si29 MAS NMR Investigation, Inorg. Chem. 42 (2003) 2280-2287.
    • [20] G.K. Sun, J.F. Young, R.J. Kirkpatrick, The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples, Cem. Concr. Res. 36 (2006) 18-29.
    • [21] F. Liebau, Structural Chemistry of Silicates - Structure, Bonding, and Classification, Springer-Verlag, Berlin, 1985.
    • [22] E. Bonaccorsi, S. Merlino, A.R. Kampf, The crystal structure of tobermorite 14 Å (plombierite), a C-S-H phase, J. Am. Ceram. Soc. 88 (2005) 505-512.
    • [23] S. Merlino, E. Bonaccorsi, T. Armbruster, The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships, Eur. J. Mineral. 12 (2000) 411-429.
    • [24] M.J. Buerger, The determination of the crystal structure of pectolite, Ca2NaHSi3O9, Z. Krist. 108 (1956) 248-262.
    • [25] M.J. Buerger, C.T. Prewitt, The crystal structure of wollastonite and pectolite, Proc. Natl. Acad. Sci. 47 (1961) 1884-1888.
    • [26] M.J. Buerger, C.T. Prewitt, Comparison of the crystal structures of wollastonite and pectolite, Mineral. Soc. Amer. Spec. Paper 1, 3rd General Meeting Int. Mineral. Ass. 1963, pp. 293-302.
    • [27] C.T. Prewitt, Refinement of the structure of pectolite, Ca2NaHSi3O9, Z. Krist. 125 (1967) 298-316.
    • [28] W.F. Müller, On stacking disorder and polytypism in pectolite and serandite, Z. Krist. 144 (1976) 401-408.
    • [29] Y. Takeuchi, Y. Kudoh, Hydrogen bonding and cation ordering in Magnet Cove pectolite, Z. Krist. Krist. Krist. Krist. 146 (1977) 281-292.
    • [30] Y. Ohashi, L.W. Finger, The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite, and the pectolite-schizolite-serandite series, Am. Mineral. 63 (1978) 274-288.
    • [31] Y. Ohashi, Polysynthetically-twinned structures of enstatite and wollastonite, Phys. Chem. Miner. 10 (1984) 217-229.
    • [32] F.J. Trojer, The crystal structure of parawollastonite, Z. Krist. 127 (1968) 291-308.
    • [33] Y.-S. Dai, J.E. Post, Crystal structure of hillebrandite: a natural analogue of calcium silicate hydrate (CSH) phases in Portland cement, Am. Mineral. 80 (1995) 841-844.
    • [34] J.A. Gard, H.F.W. Taylor, The crystal structure of foshagite, Acta Cryst. 13 (1960) 785-793.
    • [35] E. Bonaccorsi, S. Merlino, H.F.W. Taylor, The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O, Cem. Concr. Res. 34 (2004) 1481-1488.
    • [36] I.G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. B70 (2014) 903-923.
    • [37] H. Stade, On the structure of ill-crystallized calcium hydrogen silicates.II. A phase consisting of poly- and disilicate, Z. Anorg. Allg. Chem. 470 (1980) 69-83 (in German).
    • [38] H. Stade, W. Wieker, On the structure of ill-crystallized calcium hydrogen silicates. I. Formation and properties of an ill-crystallized calcium hydrogen disilicate phase, Z. Anorg. Allg. Chem. 466 (1980) 55-70 (in German).
    • [39] H. Stade, W. Wieker, G. Garzo, On the structure of ill-crystallized calcium hydrogen silicates. IV. Anion composition of the hydration products of tricalcium silicate, Z. Anorg. Allg. Chem. 500 (1983) 123-131.
    • [40] H. Stade, D. Müller, G. Scheler, On the structure of ill-crystallized calcium hydrogen silicates. V. Studies on the coordination of Al in CSH(di,poly) by 27Al NMR spectroscopy, Z. Anorg. Allg. Chem. 510 (1984) 16-24.
    • [41] H. Stade, A.-R. Grimmer, G. Engelhardt, M. Magi, E. Lippmaa, On the structure of ill-crystallized calcium hydrogen silicates. VII. Solid state silicon-29 NMR studies on C-S-H (Di,Poly), Z. Anorg. Allg. Chem. 528 (1985) 147-151 (in German).
    • [42] H. Stade, D. Müller, On the coordination of Al in ill-crystallized C-SH phases formed by hydration of tricalcium silicate and by precipitation reactions at ambient temperature, Cem. Concr. Res. 17 (1987) 553-561.
    • [43] X. Cong, R.J. Kirkpatrick, 1H-29Si CPMAS NMR study of the structure of calcium silicate hydrate, Adv. Cem. Res. 7 (1995) 103-111.
    • [44] F. Brunet, Ph. Bertani, Th. Charpentier, A. Nonat, J. Virlet, Application of 29Si homonuclear and 1H-29Si heteronuclear NMR correlation to structural studies of calcium silicate hydrates, J. Phys. Chem. B 108 (2004) 15494-15502.
    • [45] I.G. Richardson, A.R. Brough, G.W. Groves, C.M. Dobson, The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase, Cem. Concr. Res. 24 (1994) 813-829.
    • [46] G. Engelhardt, D. Michel, High Resolution Solid-State NMR of Silicates and Zeolites, Wiley, New York, 1987.
    • [47] M.D. Andersen, H.J. Jakobsen, J. Skibsted, Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res. 34 (2004) 857-868.
    • [48] R. Taylor, I.G. Richardson, R.M.D. Brydson, Nature of C-S-H in 20 year old neat ordinary Portland cement and 10% Portland cement-90% ground granulated blast furnace slag pastes, Adv. Appl. Ceram. 106 (2007) 294-301.
    • [49] A.V. Girão, I.G. Richardson, C.B. Porteneuve, R.M.D. Brydson, Morphology and nanostructure C-S-H in white Portland cement-fly ash hydrated at 85 °C, Adv. Appl. Ceram. 106 (2007) 283-293.
    • [50] A.V. Girão, I.G. Richardson, R. Taylor, R.M.D. Brydson, Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C, Cem. Concr. Res. 40 (2010) 1350-1359.
    • [51] P.J. Le Sueur, Studies of the hydration of tricalcium silicatePhD thesis University of Oxford, UK, 1984.
    • [52] B.K. Marsh, Relationships between engineering properties and microstructural characteristics of hardened cement paste containing pulverized-fuel ash as a partial cement replacementPhD thesis Hatfield Polytechnic, UK, 1984.
    • [53] B.K. Marsh, R.L. Day, Pozzolanic and cementitious reactions of fly ash blended cement pastes, Cem. Concr. Res. 18 (1988) 301-310.
    • [54] J.A. Forrester, A conduction calorimeter for the study of cement hydration, Soc. Chem. Ind. Meeting, December 16th 1965.
    • [55] J.A. Forrester, A conduction calorimeter for the study of cement hydration, Cem. Technol. 1 (1970) 95-99.
    • [56] C.A. Love, I.G. Richardson, A.R. Brough, Composition and structure of C-S-H in white Portland cement-20% metakaolin pastes hydrated at 25 °C, Cem. Concr. Res. 37 (2007) 109-117.
    • [57] J. Chudek, G. Hunter, M. Jones, S. Scrimgeour, P. Hewlett, A. Kudryavtsev, Aluminium-27 solid state NMR spectroscopic studies of chloride binding in Portland cement and blends, J. Mater. Sci. 35 (2000) 4275-4288.
    • [58] I.G. Richardson, Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume, Cem. Concr. Res. 34 (2004) 1733-1777.
    • [59] P.W. Brown, J.V. Bothe, The stability of ettringite, Adv. Cem. Res. 5 (1993) 47-63.
    • [60] J. Skibsted, E. Henderson, H.J. Jakobsen, Characterization of calcium aluminate phases in cements by aluminum-27 MAS NMR spectroscopy, Inorg. Chem. 32 (1993) 1013-1027.
    • [61] M.D. Andersen, H.J. Jakobsen, J. Skibsted, A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res. 36 (2006) 3-17.
    • [62] Z. Dai, T.T. Tran, J. Skibsted, Aluminum incorporation in the C-S-H phase of white Portland cement-metakaolin blends studied by 27Al and 29Si MAS NMR Spectroscopy, J. Am. Ceram. Soc. 97 (2014) 2662-2671.
    • [63] B. Lothenbach, K.L. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244-1256.
    • [64] E. Berodier, K. Scrivener, Understanding the filler effect on the nucleation and growth of C-S-H, J. Am. Ceram. Soc. 97 (2014) 3764-3773.
    • [65] S.S. Beedle, G.W. Groves, S.A. Rodger, The effect of fine pozzolanic and other particles on the hydration of C3S, Adv. Cem. Res. 2 (1989) 3-8.
    • [66] W.A. Gutteridge, J.A. Dalziel, Filler cement: the effect of the secondary component on the hydration of Portland cement. Part I: A fine non-hydraulic filler, Cem. Concr. Res. 20 (1990) 778-782.
    • [67] W.A. Gutteridge, J.A. Dalziel, Filler cement: the effect of the secondary component on the hydration of Portland cement. Part 2: Fine hydraulic binders, Cem. Concr. Res. 20 (1990) 853-861.
    • [68] H. Moosberg-Bustnes, B. Lagerblad, E. Forssberg, The function of fillers in concrete, Mater. Struct. 37 (2004) 74-81.
    • [69] D.P. Bentz, Modeling the influence of limestone filler on cement hydration using CEMHYD3D, Cem. Concr. Compos. 28 (2006) 124-129.
    • [70] T. Oey, A. Kumar, J.W. Bullard, N. Neithalath, G. Sant, The filler effect: the influence of filler content and surface area on cementitious reaction rates, J. Amer. Ceram. Soc. 96 (2013) 1978-1990.
    • [71] B.K. Marsh, R.L. Day, D.G. Bonner, Strength gain and calcium hydroxide depletion in hardened cement pastes containing fly ash, Mag. Concr. Res. 38 (1986) 23-29.
    • [72] S. Diamond, Q. Sheng, J. Olek, Evidence of minimal pozzolanic reaction in a fly ash cement during the period of major strength development, Mater. Res. Soc. Symp. Proc. 137 (1989) 437-446.
    • [73] R.F. Feldman, G.G. Carette, V.M. Malhotra, Studies on mechanism of development of physical and mechanical properties of high volume fly ash-cement pastes, Cem. Concr. Comp. 12 (1990) 245-251.
    • [74] R. Hardtl, The pozzolanic reaction of fly ash in connection with different types of cement, Proc. 10th Int. Cong. Chem. Cem., Gothenburg, vol. 3 1997, p. 3ii082 (8pp.).
    • [75] V.G. Papadakis, Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash, Cem. Concr. Res. 29 (1999) 1727-1736.
    • [76] L. Lam, W.L. Wong, C.S. Poon, Degree of hydration and gel/space ratio of highvolume fly ash/cement systems, Cem. Concr. Res. 30 (2000) 747-756.
    • [77] Y.M. Zhang, W. Sun, H.D. Yan, Hydration of high-volume fly ash cement pastes, Cem. Concr. Comp. 22 (2000) 445-452.
    • [78] S. Hanehara, F. Tomosawa, M. Kobayakawa, K. Hwang, Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste, Cem. Concr. Res. 31 (2001) 31-39.
    • [79] K. Luke, Pulverized fuel ash as a cement extenderChpt.14 in: P. Barnes, J. Bensted (Eds.), Structure and Performance of cement, Spon Press, London, 2002.
    • [80] E. Sakai, S. Miyahara, S. Ohsawa, S.-H. Lee, M. Daimon, Hydration of fly ash cement, Cem. Concr. Res. 35 (2005) 1135-1140.
    • [81] K. De Weerdt, M. Ben Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, B. Lothenbach, Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cem. Concr. Res. 41 (2011) 279-291.
    • [82] Q. Zeng, K. Li, T. Fen-chong, P. Dangla, Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes, Constr. Build. Mater. 27 (2012) 560-569.
    • [83] W. Fajun, M.W. Grutzeck, D.M. Roy, The retarding effects of fly ash upon the hydration of cement pastes: the first 24 hours, Cem. Concr. Res. 15 (1985) 174-184.
    • [84] Concrete Society, The use of GGBS and PFA in concrete, Report of a Concrete Society Working Party, Technical Report no. 40 1991, p. TR040.
    • [85] J.G. Cabrera, C. Plowman, The influence of pulverised fuel ash on the early and long term strength of concrete, Proc. 7th Int. Cong. Chem. Cem., III 1980, pp. IV-84-IV92.
    • [86] C. Plowman, J.G. Cabrera, The influence of pulverised fuel ash on the hydration reactions of calcium aluminates, Proc. Mater. Res. Soc. Symp. Effects of Flyash Incorporation in Cement and Concrete 1981, pp. 71-81.
    • [87] H. Uchikawa, S. Uchida, Influence of pozzolana on the hydration of C3A, Proc. 7th Int. Cong. Chem. Cem., III 1980, pp. IV-24-IV-29.
    • [88] K. Ogawa, H. Uchikawa, K. Takemoto, The mechanism of the hydration in the system C3S-pozzolana, Cem. Concr. Res. 10 (1980) 683-696.
    • [89] I. Jawed, J. Skalny, Hydration of tricalcium silicate in the presence of fly ash, Mater. res. Soc. proc. symp. effects of fly Ash Incorporation in cement and concrete, Materials Research Society, Boston November 16-18 1981, pp. 60-70.
    • [90] Y. Halse, D.J. Goult, P.L. Pratt, Calorimetry and microscopy of flyash and silica fume cement blends, Br. Ceram. Proc. 35 (1984) 403-417.
    • [91] A. Ghose, P.L. Pratt, Studies of the hydration reactions and microstructure of cement-flyash pastes, Proc. Mater. Res. Soc. Symp. Effects of Flyash Incorporation in Cement and Concrete, Materials Research Society, Boston November 16-18 1981, pp. 82-91.
    • [92] F. Deschner, F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, J. Neubauer, Hydration of Portland cement with high replacement by siliceous fly ash, Cem. Concr. Res. 42 (2012) 1389-1400.
    • [93] S. Abdul-Maula, I. Odler, Hydration reactions in flyash-Portland cements, proc. Mater. res. Soc. symp. effects of flyash incorporation in cement and concrete, Materials Research Society, Boston November 16-18 1981, pp. 102-111.
    • [94] E.E. Berry, R.T. Hemmings, W.S. Langley, G.G. Carette, Beneficated fly ash: hydration, microstructure, and strength development in Portland cement systems, Proc. 3rd Int. Conf. Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Trondheim, ACI SP-114, vol. 1 1989, pp. 241-273.
    • [95] H. Uchikawa, S. Uchida, S. Hanehara, Flocculation structure of fresh cement paste determined by sample freezing-back scattered electron image, Il Cemento 84 (1987) 3-22.
    • [96] K. Takemoto, H. Uchikawa, Hydration of pozzolanic cement, Proc. 7th Int. Cong. Chem. Cem., 1, 1980 (IV-2/1-IV-2/29).
    • [97] I.G. Richardson, The calcium silicate hydrates, Cem. Concr. Res. 38 (2008) 137-158.
    • [98] A.V. Girão, I.G. Richardson, C.B. Porteneuve, R.M.D. Brydson, Composition, morphology and nanostructure of C-S-H in white Portland cement pastes hydrated at 55 °C, Cem. Concr. Res. 37 (2007) 1571-1582.
    • [99] E. L'Hôpital, B. Lothenbach, G. Le Saout, D. Kulik, K. Scrivener, Incorporation of aluminium in calcium-silicate-hydrates, Cem. Concr. Res. 75 (2015) 91-103.
    • [100] E. Lippmaa, M. Mägi, A. Samoson, G. Engelhardt, A.R. Grimmer, Structural studies of silicates by solid-state high resolution 29Si NMR, J. Am. Chem. Soc. 102 (1980) 4889-4893.
    • [101] E. Lippmaa, M. Mägi, M. Tarmak, W. Wieker, A.R. Grimmer, A high resolution 29Si NMR study of the hydration of tricalcium silicate, Cem. Concr. Res. 12 (1982) 597-602.
    • [102] N.J. Clayden, C.M. Dobson, C.J. Hayes, S.A. Rodger, Hydration of tricalcium silicate followed by solid-state 29Si NMR spectroscopy, J. Chem. Soc. Cem. Commun. 1396-1397 (1984).
    • [103] N.J. Clayden, C.M. Dobson, G.W. Groves, S.A. Rodger, The application of solid-state nuclear magnetic resonance spectroscopy techniques to the study of the hydration of tricalcium silicate, Proc. 8th Int. Cong. Chem. Cem., III 1986, pp. 51-56.
    • [104] S.A. Rodger, G.W. Groves, N.J. Clayden, C.M. Dobson, A study of tricalcium silicate hydration from very early to very late stages, Mat. Res. Soc. Symp. Proc. 85 (1987) 13-20.
    • [105] S.A. Rodger, G.W. Groves, N.J. Clayden, C.M. Dobson, Hydration of tricalcium silicate followed by 29Si NMR with cross-polarization, J. Am. Ceram. Soc. 71 (1988) 91-96.
    • [106] I.F. Sáez del Bosque, S. Martínez-Ramírez, M. Martín-Pastor, M.T. Blanco-Varela, Effect of temperature on C-S-H gel nanostructure in white cement, Mater. Struct. 47 (2014) 1867-1878.
    • [107] A.R. Brough, I.G. Richardson, G.W. Groves, C.M. Dobson, Alkali activation of reactive silicas in cements: In situ 29Si MAS NMR studies of the kinetics of silicate polymerization, J. Mater. Sci. 31 (1996) 3365-3373.
    • [108] J. Hjorth, J. Skibsted, H.J. Jakobsen, 29Si MAS NMR studies of Portland cement components and effects of microsilica on the hydration reaction, Cem. Concr. Res. 18 (1988) 789-798.
    • [109] G. Parry-Jones, A.J. Al-Tayyib, S.U. Al-Dulaijan, A.I. Al-Mana, 29Si MAS-NMR hydration and compressive strength study in cement, Cem. Concr. Res. 19 (1989) 228-234.
    • [110] S.U. Al-Dulaijan, G. Parry-Jones, A.J. Al-Tayyib, A.I. Al-Mana, 29Si magic-angle-spinning nuclear magnetic resonance study of hydrated cement paste and mortar, J. Am. Ceram. Soc. 3 (1990) 736-739.
    • [111] X. Cong, R.J. Kirkpatrick, 17O and 29Si MAS NMR study of β-C2S hydration and the structure of calcium-silicate hydrates, Cem. Concr. Res. 23 (1993) 1065-1077.
    • [112] A.R. Brough, C.M. Dobson, I.G. Richardson, G.W. Groves, In situ solid state NMR studies of Ca3SiO5: hydration at room temperature and at elevated temperatures using 29Si enrichment, J. Mater. Sci. 29 (1994) 3926-3940.
    • [113] I.G. Richardson, G.W. Groves, S.A. Rodger, The porosity and pore structure of hydrated cement pastes as revealed by electron microscopy techniques, Mater. Res. Soc. Symp. Proc. 137 (1989) 313-318.
    • [114] S.A. Rodger, G.W. Groves, The microstructure of tricalcium silicate/pulverized-fuel ash blended cement pastes, Adv. Cem. Res. 1 (1988) 84-91.
    • [115] S.A. Rodger, G.W. Groves, Electron microscopy study of ordinary Portland cement and ordinary Portland cement-pulverised fuel ash blended pastes, J. Am. Ceram. Soc. 72 (1989) 1037-1039.
    • [116] H.S. Pietersen, Application of TEM to characterize fly and slag cements, Heron 44 (1999) 299-312.
    • [117] D. Kulik, Improving the structural consistency of C-S-H solid solution thermodynamic models, Cem. Concr. Res. 41 (2011) 477-495.
    • [118] R.J. Myers, S.A. Bernal, J.L. Provis, A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation, Cem. Concr. Res. 66 (2014) 27-47.
    • [119] E.T. Rodriguez, I.G. Richardson, L. Black, E. Boehm-Courjault, A. Nonat, J. Skibsted, Composition, Silicate Anion Structure and Morphology of Calcium Silicate Hydrates (C-S-H) Synthesized by Silica-Lime Reaction and by the Controlled Hydration of Tricalcium Silicate (C3S)(Accepted for publication in) Adv. App. Ceram. (2015), http://dx.doi.org/10.1080/17436753.2015.1122330.
    • [120] H. Bassett, Notes on the system lime-water, and on the determination of calcium, J. Chem. Soc. 1270-1275 (1934).
    • [121] J. Johnston, C. Grove, The solubility of calcium hydroxide in aqueous salt solutions, J. Am. Chem. Soc. 53 (1931) 3976-3991.
    • [122] R.G. Bates, V.E. Bower, E.R. Smith, Calcium hydroxide as a highly alkaline pH standard, J. Res. Natl. Bur. Stand. 56 (1956) 305-312.
    • [123] J. Duchesne, E.J. Reardon, Measurement and prediction of portlandite solubility in alkali solutions, Cem. Concr. Res. 25 (1995) 1043-1053.
    • [124] P. Longuet, L. Burglen, A. Zelwer, The liquid phase of hydrated cement, Rev. Mater. Constr. 676 (1973) 35-41 (in French).
    • [125] R.S. Barneyback, S. Diamond, Expression and analysis of pore fluids from hardened cement pastes and mortars, Cem. Concr. Res. 11 (1981) 279-285.
    • [126] F.P. Glasser, K. Luke, M.J. Angus, Modification of cement pore fluid compositions by pozzolanic additives, Cem. Concr. Res. 18 (1988) 165-178.
    • [127] D. Constantiner, D. Diamond, in: K.L. Scrivener, J.F. Young, E & FN Spon (Eds.),Pore solution analysis: Are there pressure effects?, Proc. Mater. Res. Soc. Symp. on Mechanisms of Chemical Degradation of Cement-Based Systems 1997, pp. 22-29.
    • [128] J. Duchesne, M.A. Berube, Evaluation of the validity of the pore solution expression method from hardened cement pastes and mortars, Cem. Concr. Res. 24 (1994) 456-462.
    • [129] B. Lothenbach, Thermodynamic equilibrium calculations in cementitious systems, Mater. Struct. 43 (2010) 1413-1433.
    • [130] V.A. Lashchenko, V.I. Loganina, Liquid phase of hydrated Portland cement, Zh. Prikl. Khim. 47 (1974) 645-647 (in Russian).
    • [131] S. Diamond, Effects of two Danish flyashes on alkali contents of pore solutions of cement-flyash pastes, Cem. Concr. Res. 11 (1981) 383-394.
    • [132] C.L. Page, Ø. Vennesland, Pore solution composition and chloride binding capacity of silica-fume cement pastes, Mater. Constr. 16 (1983) 19-25.
    • [133] J.-G. Xue, W.-X. Xu, M.-X. Ye, A study of the liquid phase separated from the pores of hardened cement paste, Kuei Suan Yen Hsueh Pao (J. Chin. Silic. Soc.) 11 (1983) 276-289.
    • [134] F.P. Glasser, J. Marr, The alkali binding potential of OPC and blended cements, Il Cemento 82 (1985) 85-94.
    • [135] M. Silsbee, R.I.A. Malek, D.M. Roy, Composition of the pore fluids extruded from slag-cement pastes, Proc. 8th Int. Cong. Chem. Cem., IV 1986, pp. 263-269.
    • [136] I. Canham, C.L. Page, P.J. Nixon, Aspects of the pore solution chemistry of blended cements related to the control of alkali silica reaction, Cem. Concr. Res. 17 (1987) 839-844.
    • [137] K. Andersson, B. Allard, M. Bengtsson, B. Magnusson, Chemical composition of cement pore solutions, Cem. Concr. Res. 19 (1989) 327-332.
    • [138] A.L.A. Fraay, J.M. Bijen, Y.M. de Haan, The reaction of fly ash in concrete, Cem. Concr. Res. 19 (1989) 235-246.
    • [139] S. Goñi, M.P. Lorenzo, A. Guerrero, M.S. Hernández, Calcium hydroxide saturation factors in the pore solution of hydrated Portland cement fly ash pastes, J. Am. Ceram. Soc. 79 (1996) 1041-1046.
    • [140] E.E. Lachowski, F.P. Glasser, A. Kindness, K. Luke, Compositional development (solid and aqueous phase) in aged slag and fly ash blended cement pastes, Proc. 10th Int. Cong. Chem. Cem., Gothenburg 1997, p. 3ii091 (8 pp.).
    • [141] M.H. Shehata, M.D.A. Thomas, R.F. Bleszynski, The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes, Cem. Concr. Res. 29 (1999) 1915-1920.
    • [142] S. Song, H.M. Jennings, Pore solution chemistry of alkali-activated ground granulated blast-furnace slag, Cem. Concr. Res. 29 (1999) 159-170.
    • [143] S. Song, D. Sohn, H.M. Jennings, T.O. Mason, Hydration of alkali-activated ground granulated blast furnace slag, J. Mater. Sci. 35 (2000) 249-257.
    • [144] J.K. Tishmack, J. Olek, S. Diamond, S. Sahu, Characterization of pore solutions expressed from high-calcium fly-ash-water pastes, Fuel 80 (2001) 815-819.
    • [145] D. Rothstein, J.J. Thomas, B.J. Christensen, H.M. Jennings, Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time, Cem. Concr. Res. 32 (2002) 1663-1671.
    • [146] F. Puertas, A. Fernández-Jiménez, M.T. Blanco-Varela, Pore solution in alkaliactivated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cem. Concr. Res. 34 (2004) 139-148.
    • [147] B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cem. Concr. Res. 37 (2007) 483-491.
    • [148] K. Luke, E. Lachowski, Internal composition of 20-year-old fly ash and slag-blended ordinary Portland cement pastes, J. Am. Ceram. Soc. 91 (2008) 4084-4092.
    • [149] B. Lothenbach, F. Winnefeld, Thermodynamic modelling of the hydration of Portland cement, Cem. Concr. Res. 36 (2006) 209-226.
    • [150] A. Kumar, G. Sant, C. Patapy, C. Gianocca, K.L. Scrivener, The influence of sodium and potassium hydroxide on alite hydration: experiments and simulations, Cem. Concr. Res. 42 (2012) 1513-1523.
    • [151] E.J. Reardon, Problems and approaches to the prediction of the chemical composition in cement-water systems, Waste Manag. 12 (1992) 221-239.
    • [152] F.P. Glasser, J. Pedersen, K. Goldthorpe, M. Atkins, Solubility reactions of cement components with NaCl solutions: I. Ca(OH)2 and C-S-H, Adv. Cem. Res. 17 (2005) 57-64.
    • [153] J.J. Thomas, D. Rothstein, H.M. Jennings, B.J. Christensen, Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes, Cem. Concr. Res. 33 (2003) 2037-2047.
    • [154] E. Gallucci, P. Mathur, K.L. Scrivener, Microstructural development of early age hydration shells around cement grains, Cem. Concr. Res. 40 (2010) 4-13.
    • [155] E.M. Gartner, K.E. Kurtis, P.J.M. Monteiro, Proposed mechanism of C-S-H growth tested by soft X-ray microscopy, Cem. Concr. Res. 30 (2000) 817-822.
    • [156] M.C.G. Juenger, V.H.R. Lamour, P.J.M. Monteiro, E.M. Gartner, G.P. Denbeaux, Direct observation of cement hydration by soft X-ray transmission microscopy, J. Mat. Sci. Lett. 22 (2003) 1335-1337.
    • [157] M.C.G. Juenger, P.J.M. Monteiro, E.M. Gartner, G.P. Denbeaux, A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration, Cem. Concr. Res. 35 (2005) 19-25.
    • [158] A.R. Brough, C.M. Dobson, I.G. Richardson, G.W. Groves, A study of the pozzolanic reaction by solid-state 29Si NMR using selective isotopic enrichment, J. Mater. Sci.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article