LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Universoty of Western Sydney
Languages: Welsh
Types: Article
Subjects: PB1501
This article reports on a key-logging experiment carried out in order to investigate the effect that Translation Memory matches in the 70%-95% range have on particular aspects of the translation process. Operationalising the translation process as text (re)production following Englund-Dimitrova (2005), Translog-II is used to investigate whether the use of fuzzy matches in this range can reduce cognitive effort based on Working Memory Capacity and recorded pauses, to study the effect that adapting and correcting fuzzy matches in this range has on linear and non-linear writing processes, and to examine variables related to revision, time and productivity. Results show that initial reading time and self-revision is longer in the case of fuzzy match correction compared to manual translation. Data also show however that cognitive load as measured by pauses is reduced and that productivity is also increased. Significant differences are also observed in terms of text production strategies between the translators who edited the fuzzy matches and those who translated without them.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alves, F., & Vale, D. C. (2011). On drafting and revision in translation: A corpus linguistic oriented analysis of translation process data. Translation: Computation, Corpora, Cognition, 1(1), 105-122.
    • Baddeley, A.D. (1999). Essentials of human memory. Hove: Psychology Press.
    • Butterworth, B. (1980). Evidence from pauses in speech. In B. Butterworth (Ed.), Language production. Volume 1- Speech and talk (pp. 155-176 ). London: Academic Press.
    • Carl, M., Gutermuth, S., & Hansen-Schirra, S. (2015). Post-editing machine translation: Efficiency, strategies and revision processes in professional translation settings. In A. Ferreira & J. W. Schwieter (Eds.), Psycholinguistic and Cognitive Inquiries into Translation and Interpreting (pp. 145-174). Amsterdam/Philadelphia: John Benjamins.
    • Christensen, T.P. (2011). Studies on the mental porocesses in translation memoryassisted translation - The state of the art. Trans-Kom, 4(2), 137-160.
    • DePalma, D., Stewart, R., & Whittaker, B. (2010). Translation and localization pricing: A comprehensive study of what language services cost. Lowell, Massachusetts: Common Sense Advisory.
    • Dragsted, B. (2005). Segmentation in translation: Differences accross levels of experience and difficulty. Target, 17(1), 49-70.
    • Dragsted, B. (2010). Co-ordination of reading and writing processes in translation: An eye on unchartered territory. In G. Shreve & E. Angelone (Eds.), Translation and Cognition (pp. 41-63). Amsterdam/Philadelphia: John Benjamins.
    • Dragsted, B., & Carl, M. (2013). Towards a classification of translation styles based on eye-tracking and key-logging data. Journal of Writing Research, 5(1), 133- 158.
    • Englund-Dimitrova, B. (2005). Expertise and explication in the translation process. Amsterdam/Philadelphia: John Benjamins.
    • Gile, D. (1995). Basic models and concepts for interpreter and translator training. Amsterdam/Philadelphia: John Benjamins.
    • Hayes, J. R. (1996). A new framework for understanding cognition and affect in writing. In C. M. Levy & S. Ransdell (Eds.), The science of writing. Theories, methods, individual differences, and applications (pp. 1-27). Mahwah, New Jersey: Lawrence Erlbaum Associates.
    • Jakobsen, A. (2002). Translation drafting by professional translators and by translation students. In G. Hansen (Ed.), Empirical translation studies (pp. 191- 204). Copenhagen: Samfundslitteratur.
    • Jakobsen, A. (2003). Effects of Think Aloud on translation speed, revision and segmentation. In F. Alves (Ed.), Triangulating translation (pp. 69-97). Amsterdam/Philadelphia: John Benjamins.
    • Jakobsen, A. (2005). Investigating expert translators' processing knowledge. In H. V. Dam, J. Engberg & H. Gerzymisch-Arbogast (Eds.), Knowledge systems and translation (pp. 173-193). Berlin/New York: Mouton de Gruyter.
    • Jakobsen, A., & Jensen, K.T.H. (2008). Eye movement behaviour across four different types of reading task. In S. Göpferich, A. L. Jakobsen & I. M. Mees (Eds.), Looking at eyes: Eye-tracking studies of reading and translation processing (pp. 103-124). Copenhagen: Samfundslitteratur.
    • Jensen, K.T.H (2011). Allocation of cognitive resources in translation: An eyetracking and key-logging study. Doctoral dissertation, Copenhagen Business School.
    • Koglin, A. (2015). An empirical investigation of cognitive effort required to post-edit machine translated metaphors compared to the translation of metaphors. Translation and Interpreting, 7(1), 126-141.
    • Krings, H. P. (2001). Repairing texts: Empirical investigations of machine translation post-editing processes. Kent, Ohio: Kent State University Press.
    • Kumpulainen, M. (2015). On the operationalisation of 'pauses' in translation process research. Translation and Interpreting, 7(1), 47-58.
    • Lacruz, I., & Shreve, G. (2014). Pauses and cognitive effort in post-editing. In S. O'Brien, L. W. Balling, M. Carl, M. Simard, & L. Specia (Eds.), Post-editing of
    • 1. Ni chaiff y mater hwn ei drafod yma gan ei fod yn fater ehangach i we2.0 a bydd angen i sefydliadau benderfynu drostynt eu hunain ble mae'r ffiniau i fod.
    • 2. er bod sawl ffurf i dechnoleg gwe2.0, gellir sôn am eu gweithredoedd cyffredin fel a ganlyn;
    • 3. Er mai cyfeirio'n unig at y Gymraeg a'r Saesneg y mae'r adroddiad hwn, efallai bod cyd-destunau lle y mae angen cynnwys ieithoedd ychwanegol.
    • 4. Mae negeseuon yn ddarnau mwy sylweddol o gynnwys (testun, delweddau, sain, fideo) sy'n fwy tebygol o fod yn destun rhyw fath o reolaeth ansawdd ac felly'n llai ymatebol (llai anffurfiol, mwy tebygol o gael eu hystyried yn rhywbeth gan y sefydliad yn hytrach nag oddi wrth aelod unigol o staff, llai o bersonoliaeth).
    • 5. Felly mae mwy o gyfle i dywys y rhain drwy broses gyfieithu neu ddarparu fersiwn gyfochrog mewn iaith arall.
    • 6. Fel arfer, bydd negeseuon yn agor rhyw drafodaeth yn hytrach nag yn sylwadau.
    • 7. Gallai'r unigolyn sy'n ei hanfon fod wedi'i enwi, ond gellid hefyd gyflwyno neges fel petai'n allbwn ar y cyd, e.e. oddi wrth y “tîm'' ehangach.
    • 8. Gall un neu ragor o'r sylwadau mewn ateb i'r “neges” gael eu hanfon gan y cyhoedd.
    • 9. Yn yr adroddiad hwn, cyfeirir at o'r cynnwys sydd wedi ei greu gan y cyhoedd (cynnwys a gynhyrchir gan y cyhoedd) fel “sylwadau”.
    • 10. Gall un neu ragor o'r ymatebion sy'n ateb y sylwadau, negeseuon neu ddigwyddiadau eraill, gael eu hanfon gan y staff.
    • 11. Mae'n annhebygol y bydd y rhain yn gallu dod o dan unrhyw drefn rheoli ansawdd. Maent yn cyflwyno personoliaeth aelod o'r staff.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article