LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rahmani, Farshid; Behzadian, Kourosh; Ardeshir, Abdollah (2015)
Publisher: ASCE
Languages: English
Types: Article
Subjects: Civil_env_eng
Identification of the optimal rehabilitation plan for a large water distribution system (WDS) with a substantial number of decision variables is a challenging task, especially when no supercomputer facilities are available. This paper presents an initiative methodology for the rehabilitation of WDS based on three sequential stages of multiobjective optimization models for gradually identifying the best-known Pareto front (PF). A two-objective optimization model is used in the first two stages where the objectives are to minimize rehabilitated infrastructure costs and operational costs. The optimization model in the first stage applies to a skeletonized WDS. The PFs obtained in Stage 1 are further improved in Stage 2 using the same two-objective optimization problem but for the full network. The third stage employs a three-objective optimization model by minimizing the cost of additional pressure reducing valves (PRVs) as the third objective. The suggested methodology was demonstrated through use of a real and large WDS from the literature. Results show the efficiency of the suggested methodology to achieve the optimal solutions for a large WDS in a reasonable computational time. Results also suggest the minimum total costs that will be obtained once maximum leakage reduction is achieved due to maximum possible pipeline rehabilitation without increasing the existing tanks.

Share - Bookmark

Download from

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok