LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
Hyper-heuristics are a class of high-level search methodologies which operate over a search space of heuristics rather than a search space of solutions. Hyper-heuristic research has set out to develop methods which are more general than traditional search and optimisation techniques. In recent years, focus has shifted considerably towards cross-domain heuristic search. The intention is to develop methods which are able to deliver an acceptable level of performance over a variety of different problem domains, given a set of low-level heuristics to work with.\ud \ud This thesis presents a body of work investigating the use of selection hyper-heuristics in a number of different problem domains. Specifically the use of crossover operators, prevalent in many evolutionary algorithms, is explored within the context of single-point search hyper-heuristics. A number of traditional selection hyper-heuristics are applied to instances of a well-known NP-hard combinatorial optimisation problem, the multidimensional knapsack problem. This domain is chosen as a benchmark for the variety of existing problem instances and solution methods available. The results suggest that selection hyper-heuristics are a viable method to solve some instances of this problem domain. Following this, a framework is defined to describe the conceptual level at which crossover low-level heuristics are managed in single-point selection hyper-heuristics. HyFlex is an existing software framework which supports the design of heuristic search methods over multiple problem domains, i.e. cross-domain optimisation. A traditional heuristic selection mechanism is modified in order to improve results in the context of cross-domain optimisation. Finally the effect of crossover use in cross-domain optimisation is explored.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 5.2 Single-point search hyper-heuristic framework with local improvement (FC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    • [10] Roberto Battiti. Modern heuristic search methods, chapter Reactive search: Toward self-tuning heuristics, pages 61-83. Wiley, 1996.
    • [11] Roberto Battiti, Mauro Brunato, and Franco Mascia, editors. Reactive search and intelligent optimization. Springer, 2008.
    • [12] Argun Berberoglu and A. Sima Uyar. Experimental comparison of selection hyper-heuristics for the short-term electrical power generation scheduling problem. In Cecilia Di Chio, Anthony Brabazon, Gianni A. Di Caro, Rolf Drechsler, Muddassar Farooq, Jörn Grahl, Gary Greenfield, Christian Prins, Juan Romero, Giovanni Squillero, Ernesto Tarantino, Andrea Tettamanzi, Neil Urquhart, and A. Sima Etaner-Uyar, editors, Proceedings of the International Conference on the Applications of Evolutionary Computation (EvoApplications 2011), volume 6625 of LNCS, pages 444-453, Torino, Italy, 2011. Springer.
    • [13] Leonardo Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic generation of moaco algorithms for the biobjective bidimensional knapsack problem. In Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries Petrus Engelbrecht, Roderich Groß, and Thomas Stützle, editors, Proceedings of Swarm Intelligence - 8th International Conference (ANTS 2012), volume 7461 of LNCS, pages 37-48, Brussels, Belgium, 2012. Springer.
    • [14] Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz. An experimental study on hyper-heuristics and exam timetabling. In Edmund K. Burke and Hana Rudová, editors, Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2006), volume 3867 of LNCS, pages 394-412, Brno, Czech Republic, 2006. Springer.
    • [15] Burak Bilgin, Peter Demeester, Mustafa Misir, Wim Vancroonenburg, and Greet Vanden Berghe. One hyperheuristic approach to two timetabling problems in health care. Journal of Heuristics, 18(3):401-434, 2012.
    • [16] Duncan Black, Robert Albert Newing, Iain McLean, Alistair McMillan, and Burt L. Monroe. The theory of committees and elections. Cambridge: University Press, 1958.
    • [29] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and John Woodward. Handbook of Metaheuristics 2nd ed., chapter A Classification of Hyper-heuristic Approaches, pages 449-468. Springer, 2010.
    • [30] Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. A genetic programming hyper-heuristic approach for evolving 2-d strip packing heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942-958, 2010.
    • [31] Edmund K. Burke, Michel. Gendreau, Matthew. Hyde, Graham. Kendall, Barry. McCollum, Gabriela. Ochoa, Andrew J. Parkes, and Sanja. Petrovic. The crossdomain heuristic search challenge - an international research competition. In Carlos A. Coello Coello, editor, Proceedings of Learning and Intelligent Optimization (LION 2011), volume 6683 of LNCS, pages 631-634, Rome, Italy, 2011. Springer.
    • [32] Edmund K. Burke, Michel Gendreau, Gabriela Ochoa, and James D. Walker. Adaptive iterated local search for cross-domain optimisation. In Natalio Krasnogor and Pier Luca Lanzi, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pages 1987-1994, Dublin, Ireland, 2011. ACM.
    • [33] Edmund K. Burke, Matthew Hyde, and Graham Kendall. Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation, 16(3): 406-417, 2012.
    • [34] Edmund K. Burke, Matthew Hyde, Graham Kendall, and John Woodward. Automating the packing heuristic design process with genetic programming. Evolutionary Computation (MIT Press), 20(1):63-89, 2012.
    • [35] Edmund K. Burke, Graham Kendall, Mustafa Misir, and Ender Özcan. Monte carlo hyper-heuristics for examination timetabling. Annals of Operations Research, 196(1):73-90, 2012.
    • [36] Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society, 64(12):1695-1724, 2013.
    • [37] Konstantin Chakhlevitch and Peter Cowling. Choosing the fittest subset of low level heuristics in a hyperheuristic framework. In Günther R. Raidl and Jens Gottlieb, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2005), volume 3448 of LNCS, pages 23-33, Lausanne, Switzerland, 2005. Springer.
    • [38] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: Recent developments. In Carlos Cotta, Marc Sevaux, and Kenneth Sörensen, editors, Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Computational Intelligence, pages 3-29. Springer, 2008.
    • [39] Ching-Yuen Chan, Fan Xue, W.H. Ip, and C.F. Cheung. A hyper-heuristic inspired by pearl hunting. In Youssef Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219 of LNCS, pages 349-353, Paris, France, 2012. Springer.
    • [40] Paul C. Chu and John E. Beasley. A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4(1):63-86, 1998. ISSN 1381-1231.
    • [41] Tomasz Cichowicz, Maciej Drozdowski, Michal Frankiewicz, Grzegorz Pawlak, Filip Rytwinski, and Jacek Wasilewski. Five phase and genetic hive hyperheuristics for the cross-domain search. In Youssef Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219 of LNCS, pages 354-359, Paris, France, 2012. Springer.
    • [42] Robert Cleary and Michael O'Neill. An attribute grammar decoder for the 0/1 multiconstrained knapsack problem. In Günther R. Raidl and Jens Gottlieb, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2005), volume 3448 of LNCS, pages 34-45, Lausanne, Switzerland, 2005. Springer.
    • [43] Carlos Cobos, Martha Mendoza, and Elizabeth Leon. A hyper-heuristic approach to design and tuning heuristic methods for web document clustering. In Proceed-
    • [45] Elon Santos Correa, Maria Teresinha A. Steiner, Alex A. Freitas, and Celso Carnieri. A genetic algorithm for the p-median problem. In Lee Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pages 1268-1275, San Francisco, CA, USA, 2001. Morgan Kaufmann.
    • [46] Carlos Cotta and José Troya. Artificial Neural Nets and Genetic Algorithms, chapter A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem, pages 250- 254. Springer, 1998.
    • [47] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to scheduling a sales summit. In Edmund K. Burke and Wilhelm Erben, editors, Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2000), volume 2079 of LNCS, pages 176-190, Konstanz, Germany, 2001. Springer.
    • [48] Peter Cowling, Graham Kendall, and Eric Soubeiga. A parameter-free hyperheuristic for scheduling a sales summit. In Proceedings of the Metahuristics International Conference (MIC 2001), pages 127-131, Porto, Portugal, 2001.
    • [49] Broderick Crawford, Ricardo Soto, Eric Monfroy, Wenceslao Palma, Carlos Castro, and Fernando Paredese. Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Systems with Applications, 40 (5):1690-1695, 2013.
    • [50] CRIL. Sat competition 2007 benchmark data sets. Online, 2007. URL http: //www.cril.univ-artois.fr/SAT07/.
    • [51] CRIL. Sat competition 2009 benchmark data sets. Online, 2009. URL http: //www.cril.univ-artois.fr/SAT09/.
    • [52] Federico Della Croce and Andrea Grosso. Improved core problem based heuristics for the 0-1 multi-dimensional knapsack problem. Computers & Operations Research, 39(1):27-31, 2012.
    • [53] Tim Curtois. Staff rostering benchmark data sets. Online, 2009. URL http: ///www.cs.nott.ac.uk/~tec/NRP/.
    • [54] Lawrence Davis. Bit-climbing, representational bias, and test suite design. In Richard K. Belew and Lashon B. Booker, editors, Proceedings of the International Conference on Genetic Algorithms (ICGA 1991), pages 18-23, San Diego, CA, USA, 1991. Morgan Kaufmann.
    • [55] Richard Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 2006.
    • [56] Peter Demeester, Burak Bilgin, Patrick De Causmaecker, and Greet Vanden Berghe. A hyperheuristic approach to examination timetabling problems: Benchmarks and a new problem from practice. Journal of Scheduling, 15(1):83-103, 2012.
    • [57] Jörg Denzinger, Matthias Fuchs, and Marc Fuchs. High performance atp systems by combining several ai methods. Technical report, SEKI-Report SR-96-09, University of Kaiserslautern, 1996.
    • [58] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. In Conor Ryan and Maarten Keijzer, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008), pages 539-546, Atlanta, Georgia, USA, 2008. ACM.
    • [59] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. Theoretical Computer Science, 436:71-86, 2012.
    • [61] John H. Drake, Matthew Hyde, Khaled Ibrahim, and Ender Özcan. A genetic programming hyper-heuristic for the multidimensional knapsack problem. In Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems (CIS 2012), pages 76-80, Limerick, Ireland, 2012. IEEE Press.
    • [62] John H. Drake, Ender Özcan, and Edmund K. Burke. An improved choice function heuristic selection for cross domain heuristic search. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2012), Part II, volume 7492 of LNCS, pages 307-316, Taormina, Italy, 2012. Springer.
    • [63] John H. Drake, Nikolaos Kililis, and Ender Özcan. Generation of vns components with grammatical evolution for vehicle routing. In Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar, and Bin Hu, editors, Genetic Programming - 16th European Conference (EuroGP 2013), volume 7831 of LNCS, pages 25- 36, Vienna, Austria, 2013. Springer.
    • [64] A. Drexl. A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing, 40(1):1-8, 1988.
    • [65] Gunter Dueck. New optimization heuristics: The great deluge algorithm and the record-to-record travel. Journal of Computational Physics, 104(1):86-92, 1993.
    • [66] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124-141, 1999.
    • [67] ESICUP. European special interest group on cutting and packing benchmark data sets. Online, 2011. URL http://paginas.fe.up.pt/~esicup/.
    • [68] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. Extreme value based adaptive operator selection. In Günter Rudolph, Thomas Jansen, Simon M. Lucas, Carlo Poloni, and Nicola Beume, editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2008), volume 5199 of LNCS, pages 175-184, Dortmund, Germany, 2008. Springer.
    • [69] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. Toward comparison-based adaptive operator selection. In Martin Pelikan and Jürgen Branke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010), pages 767-774, Portland, Oregon, USA, 2010. ACM.
    • [70] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local jobshop scheduling rules. In Factory Scheduling Conference, Carnegie Institute of Technology, 1961.
    • [71] Krzysztof Fleszar and Khalil S. Hindi. Fast, effective heuristics for the 0-1 multidimensional knapsack problem. Computers & Operations Research, 36(5):1602- 1607, 2009. ISSN 0305-0548.
    • [72] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building block hypothesis. In L. Darrell Whitley, editor, Proceedings of Foundations of Genetic Algorithms (FOGA 1992), pages 109-126, Vail, Colorado, USA, 1992. Morgan Kaufmann.
    • [75] Alex S. Fukunaga. Evolving local search heuristics for sat using genetic programming. In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario Floreano, James A. Foster, Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andrew M. Tyrrell, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004), Part II, volume 3103 of LNCS, pages 483-494, Seattle, WA, USA, 2004. Springer.
    • [76] Alex S. Fukunaga. Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation (MIT Press), 16(1):31-61, 2008.
    • [77] Alberto García-Villoria, Said Salhi, Albert Corominas, and Rafael Pastor. Hyperheuristic approaches for the response time variability problem. European Journal of Operational Research, 211(1):160-169, 2011.
    • [78] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
    • [79] Pablo Garrido and Carlos Castro. Stable solving of cvrps using hyperheuristics. In Franz Rothlauf, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2009), pages 255-262, Québec, Canada, 2009. ACM.
    • [80] Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination timetabling. In Edmund K. Burke and Wilhelm Erben, editors, Proceedings of the International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008), volume 2079 of LNCS, pages 104-117, Konstanz, Germany, 2000. Springer.
    • [81] Luca Di Gaspero and Tommaso Urli. Evaluation of a family of reinforcement learning cross-domain optimization heuristics. In Youssef Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219 of LNCS, pages 384-389, Paris, France, 2012. Springer.
    • [82] C. D. Geiger, R. Uzsoy, and H. Aytug. Rapid modeling and discovery of priority dispatching rules: An autonomous learning approach. Journal of Scheduling, 9(1): 7-34, 2006.
    • [83] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the vehicle routing problem. Management science, 40(10):1276-1290, 1994.
    • [84] Jonathon Gibbs, Graham Kendall, and Ender Özcan. Scheduling english football fixtures over the holiday period using hyper-heuristics. In Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph, editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2011), volume 6238 of LNCS, pages 496-505, Kraków, Poland, 2011. Springer.
    • [85] John C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society. Series B (Methodological), 41(2):148-177, 1979.
    • [86] Fred Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5):533-549, 1986.
    • [87] Fred Glover. Tabu search - part 1. ORSA Journal on Computing, 1(2):190-206, 1989.
    • [96] Pierre Hansen, Nenad Mladenovic´, and Dionisio Perez-Britos. Variable neighborhood decomposition search. Journal of Heuristics, 7(4):335-350, 2001.
    • [97] Ami Hauptman, Achiya Elyasaf, and Moshe Sipper. Evolving hyper heuristicbased solvers for rush hour and freecell. In Ariel Felner and Nathan R. Sturtevant, editors, Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS 2010), pages 149-150, Atlanta, Georgia, USA, 2010. AAAI Press.
    • [98] Jun He, Feidun He, and Hongbin Dong. Pure strategy or mixed strategy? - an initial comparison of their asymptotic convergence rate and asymptotic hitting time. In Jin-Kao Hao and Martin Middendorf, editors, Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2012), volume 7245 of LNCS, pages 218-229, Malaga, Spain, 2012. Springer.
    • [99] Jun He, Wei Hou, Hongbin Dong, and Feidun He. Mixed strategy may outperform pure strategy: An initial study. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2013), pages 562-569, Cancun, Mexico, 2013. IEEE Press.
    • [100] Fernanda Hembecker, Heitor S. Lopes, and Walter Godoy, Jr. Particle swarm optimization for the multidimensional knapsack problem. In Bartlomiej Beliczynski, Andrzej Dzielinski, Marcin Iwanowski, and Bernardete Ribeiro, editors, Proceedings of the International Conference on Adaptive and Natural Computing Algorithms (ICANNGA 2007), Part I, volume 4431 of LNCS, pages 358-365, Warsaw, Poland, 2007. Springer.
    • [101] Robert Hinterding. Mapping, order-independent genes and the knapsack problem. In Proceedings of the IEEE Conference on Evolutionary Computation (ICEC 1994), pages 13-17, Orlando, Florida, USA, 1994. IEEE Press.
    • [104] Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on sat. In I.P.Gent, H.v.Maaren, and T.Walsh, editors, SAT 2000. IOS Press, 2000.
    • [105] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A vns-based hyperheuristic with adaptive computational budget of local search. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), pages 1-8, Brisbane, Australia, 2012. IEEE Press.
    • [106] Bernardo A Huberman, Rajan M. Lukose, and Tad Hogg. An economics approach to hard computational problems. Science, 275(5296):51-54, 1997.
    • [107] Matthew Hyde. A Genetic Programming Hyper-Heuristic Approach to Automated Packing. PhD thesis, University of Nottingham, UK, 2010.
    • [108] Matthew Hyde. One dimensional packing benchmark data sets. Online, 2011. URL http://www.cs.nott.ac.uk/~mvh/packingresources.shtml.
    • [109] Matthew Hyde, Ender Özcan, and Edmund. K. Burke. Multilevel search for evolving the acceptance criteria of a hyper-heuristic. In Proceedings of the Multidisciplinary International conference on Scheduling: Theory and Applications (MISTA 2009), pages 798-801, 2009.
    • [110] IBM. Ibm cplex optimizer. Online, 2013. URL www.ibm.com/software/commerce/ optimization/cplex-optimizer/.
    • [111] Atsuko Ikegami and Akira Niwa. Subproblem-centric model and approach to the nurse scheduling problem. Mathematical Programming, 97(3):517-541, 2003.
    • [112] Warren G. Jackson, Ender Özcan, and John H. Drake. Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In Yaochu Jin and Spencer Angus Thomas, editors, Proceedings of the 13th Annual Workshop on Computational Intelligence (UKCI 2013), pages 228-235, Surrey, UK, 2013. IEEE Press.
    • [113] Thomas Jansen and Ingo Wegener. Real royal road functions - where crossover provably is essential. Discrete Applied Mathematics, 149(1-3):111-125, 2005.
    • [114] Terry Jones. Crossover, macromutation, and population-based search. In Larry J. Eshelman, editor, Proceedings of the International Conference on Genetic Algorithms (ICGA 1995), pages 73-80, Pittsburgh, PA, USA, 1995. Morgan Kaufmann.
    • [115] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.
    • [116] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy gradient-simulated annealing hyper-heuristic for a curriculum-based course timetabling problem. In Proceedings of the 12th Annual Workshop on Computational Intelligence (UKCI 2012), pages 1-8, Edinburgh, UK, 2012.
    • [117] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy gradient-simulated annealing selection hyper-heuristic. Soft Computing, 17(12): 2279-2292, 2013.
    • [118] Robert E. Keller and Riccardo Poli. Linear genetic programming of metaheuristics. In Hod Lipson, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), pages 1753-1753, London, UK, 2007. ACM.
    • [119] Robert E. Keller and Riccardo Poli. Linear genetic programming of parsimonious metaheuristics. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pages 4508-4515, Singapore, 2007. IEEE Press.
    • [120] Graham Kendall and Mazlan Mohamad. Channel assignment optimisation using a hyper-heuristic. In Proceedings of the IEEE Conference on Cybernetic and Intelligent Systems (CIS 2004), pages 791-796, Singapore, 2004.
    • [121] James Kennedy. Encyclopaedia of Machine Learning, chapter Particle swarm optimization, pages 760-766. Springer, 2010.
    • [122] Ahmed Kheiri and Ender Özcan. A hyper-heuristic with a round robin neighbourhood selection. In Martin Middendorf and Christian Blum, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013), volume 7832 of LNCS, pages 1-12, Vienna, Austria, 2013. Springer.
    • [123] Sami Khuri, Thomas Bäck, and Jörg Heitkötter. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the ACM Symposium on Applied Computing (SAC '94), pages 188-193, Phoenix, AZ, USA, 1994. ACM.
    • [124] Berna Kiraz, A. S¸ima Uyar, and Ender Özcan. An investigation of selection hyper-heuristics in dynamic environments. In Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna Esparcia-Alcázar, Juan Julián, Merelo Guervós, Ferrante Neri, Mike Preuss, Hendrik Richter, Julian Togelius, and Georgios N. Yannakakis, editors, Proceedings of the International Conference on the Applications of Evolutionary Computation (EvoApplications 2011), volume 6624 of LNCS, pages 314-323, Torino, Italy, 2011. Springer.
    • [125] Berna Kiraz, A. S¸ima Etaner-Uyar, and Ender Özcan. An ant-based selection hyper-heuristic for dynamic environments. In Anna Isabel Esparcia-Alcázar, editor, Proceedings of the International Conference on the Applications of Evolutionary Computation (EvoApplications 2013), volume 7835 of LNCS, pages 626-625, Vienna, Austria, 2013. Springer.
    • [126] Berna Kiraz, A. Sima Uyar, and Ender Özcan. Selection hyper-heuristics in dynamic environments. Journal of the Operational Research Society, 64(12):1753-1769, 2013.
    • [127] Scott Kirkpatrick, C. Daniel Gelatt Jr, and Mario P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
    • [128] Muhammet Köle, Sima Etaner-Uyar, Berna Kiraz, and Ender Özcan. Heuristics for car setup optimisation in torcs. In Proceedings of the 12th Annual Workshop on Computational Intelligence (UKCI 2012), pages 1-8, Edinburgh, UK, 2012.
    • [129] John R. Koza. Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge, MA, 1992.
    • [130] Eduardo Krempser, Alvaro Fialho, and Helio Barbosa. Adaptive operator selection at the hyper-level. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, Proceedings of Parallel Problem Solving from Nature (PPSN 2012), Part II, volume 7492 of LNCS, pages 378-387, Taormina, Italy, 2012. Springer.
    • [131] Jiri Kubalik. Hyper-heuristic based on iterated local search driven by evolutionary algorithm. In Jin-Kao Hao and Martin Middendorf, editors, Proceedings of Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012), volume 7245 of LNCS, pages 148-159, Malaga, Spain, 2012. Springer.
    • [132] Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3):345-358, 1992.
    • [133] Andreas Lehrbaum and Nysret Musliu. A new hyperheuristic algorithm for cross domain search problems. In Youssef Hamadi and Marc Schoenauer, editors, Proceedings of Learning and Intelligent Optimization (LION 2012), volume 7219 of LNCS, pages 437-442, Paris, France, 2012. Springer.
    • [170] Ender Özcan and Can Basaran. A case study of memetic algorithms for constraint optimization. Soft Computing, 13(8-9):871-882, 2009. ISSN 1432-7643.
    • [210] Richard A. Watson and Thomas Jansen. A building-block royal road where crossover is provably essential. In Hod Lipson, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), pages 1452-1459, London, UK, 2007. ACM.
    • [211] Tony Wauters, Wim Vancroonenburg, and Greet Vanden Berghe. A guide-andobserve hyper-heuristic approach to the eternity ii puzzle. Journal of Mathematical Modelling and Algorithms, 11(3):217-233, 2012.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article