Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Article
Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. A. H. Gnauck and P.J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23 (1), 115-130 (2005).
    • 2. C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Topics Quantum Electron. 10 (2), 281-293 (2004).
    • 3. S.J. Savory, G. Gavioli, R.I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15, 2120-2126 (2007).
    • 4. J. P. Gordon, and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351-1353 (1990).
    • 5. A. Demir, “Nonlinear phase noise in optical-fiber-communication systems,” J. Lightwave Technol. 25 (8), 2002-2031 (2007).
    • 6. J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals : design and experiments,” J. of Lightwave Technol. 27 (23), 5268-5275 (2009).
    • 7. Z. Tong, A. Bogris, M. Karlsson, and P.A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers,” Opt. Express 18 (3), 2884-2893 (2010).
    • 8. H. P. Yuen and J. H. Shapiro, “Optical communication with two-photon coherent states,” IEEE Trans. Inf. Theory 24 (6), 657-668 (1978).
    • 9. K. Goda, O. Miyakawa, E.E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics 4, 472 - 476 (2008).
    • 10. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express 16, 1923-1928 (2008).
    • 11. Masayuki Matsumoto and Kenichi Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15, 8094-8103 (2007).
    • 12. M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16, 11169-11175 (2008).
    • 13. K. Croussore, I. Kim, Ch. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085-2094 (2006).
    • 14. D. Levandovsky, M. Vasilyev, and P. Kumar, “Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier,” Opt. Lett. 24 (14), 984-986 (1999).
    • 15. K. Croussore, G.Li, “Phase Regeneration of NRZ-DPSK Signals Based on Symmetric-Pump Phase-Sensitive Amplification”, IEEE Photon. Tech. Lett. 19 (11) 864-866 (2007).
    • 16. F.Parmigiani, R. Slavík, J. Kakande, C. Lundström, M. Sjödin, P.A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O'Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson., “All-Optical Phase Regeneration of 40 Gbit/s DPSK Signals in a BlackBox Phase Sensitive Amplifier” in Proc Optical Fiber Communication Conference (OFC/NFOEC 2010), San Diego (USA) Paper PDPC3, (2010).
    • 17. G.-W. Lu, and T. Miyazaki, “Optical phase add/drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21, 322-324, (2009).
    • 18. F. Morgensen, H. Olesen, and g. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. of Quantum Electron., QE-21 (7) 784-793 (1985).
    • 19. M. Sjödin, P. Johannisson, M. Sköld, M. Karlsson, and P.A. Andrekson, “Cancellation of SPM in Self-Homodyne Coherent Systems,” ECOC 2009, paper We8.4.5.
    • 20. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P.A. Andrekson “Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier”, Opt. Express 16, 5974-5982 (2008).
    • 21. Z. Zhenga, L. Ana, Z. Lia, X. Zhaoa and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification”, Opt. Communications 281 (10), 2755-2759, 2008.
    • 22. R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “−40°C
    • 23. R. Weerasuriya, S. Sygletos, S.K. Ibrahim, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A.D. Ellis, “Generation of frequency symmetric signals from a BPSK input for Phase Sensitive Amplification”, OWT6, paper number 1928, OFC 2010.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

  • SFI | Photonics System Research
  • EC | BONE

Cite this article