LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Spherical colloids decorated with a surface coating of catalytically active material are capable of producing autonomous motion in fluids by decomposing dissolved fuel molecules to generate a gaseous product, resulting in momentum generation by bubble growth and release. Such colloids are attractive as they are relatively simple to manufacture compared to more complex tubular devices and have the potential to be used for applications such as environmental remediation. However, despite this interest, little effort has been devoted to understanding the link between the catalyst distribution at the colloid surface and the resulting propulsive trajectories. Here we address this by producing colloids with well-defined distributions of catalytic activity, which can produce motion without the requirement for the addition of surfactant, and measure and analyze the resulting trajectories. By applying analysis including fractal dimension and persistence length calculations, we show that spatially confining catalytic activity to one side of the colloid results in a significant increase in directionality, which could be beneficial for transport applications. Using a simple stochastic model for bubble propulsion we can reproduce the features of the experimental data and gain insight into the way in which localizing catalytic activity can reduce trajectory randomization. However, despite this route to achieve trajectory control, our analysis makes it clear that bubble-driven swimmers are subject to very rapid randomization of direction compared to phoretic catalytic swimming devices with equivalent geometries.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial Micromotors in the Mouse's Stomach: A Step toward in Vivo Use of Synthetic Motors. ACS Nano 2015, 9 (1), 117− 123.
    • (2) Baraban, L.; Tasinkevych, M.; Popescu, M. N.; Sanchez, S.; Dietrich, S.; Schmidt, O. G. Transport of Cargo by Catalytic Janus Micro-Motors. Soft Matter 2012, 8, 48−52.
    • (3) Najafi, A.; Golestanian, R. Simple Swimmer at Low Reynolds Number: Three Linked Spheres. Phys. Rev. E 2004, 69 (6), 062901.
    • (4) Ebbens, S. J.; Howse, J. R. In Pursuit of Propulsion at the Nanoscale. Soft Matter 2010, 6 (4), 726.
    • (5) Wang, W.; Duan, W.; Ahmed, S.; Mallouk, T. E.; Sen, A. Small Power: Autonomous Nano- and Micromotors Propelled by SelfGenerated Gradients. Nano Today 2013, 8 (5), 531−554.
    • (6) Kapral, R. Perspective: Nanomotors without Moving Parts That Propel Themselves in Solution. J. Chem. Phys. 2013, 138 (2), 020901.
    • (7) Solovev, A. A.; Xi, W.; Gracias, D. H.; Harazim, S. M.; Deneke, C.; Sanchez, S.; Schmidt, O. G. Self-Propelled Nanotools. ACS Nano 2012, 6 (2), 1751−1756.
    • (8) Gibbs, J. G.; Zhao, Y.-P. Autonomously Motile Catalytic Nanomotors by Bubble Propulsion. Appl. Phys. Lett. 2009, 94 (16), 163104.
    • (9) Soler, L.; Martínez-cisneros, C.; Swiersy, A.; Sańchez, S.; Schmidt, O. G. Thermal Activation of Catalytic Microjets in Blood Samples Using Microfluidic Chips. Lab Chip 2013, 13 (22), 4299−4303.
    • (10) Vicario, J.; Eelkema, R.; Browne, W. R.; Meetsma, A.; La Crois, R. M.; Feringa, B. L. Catalytic Molecular Motors: Fuelling Autonomous Movement by a Surface Bound Synthetic Manganese Catalase. Chem. Commun. 2005, No. 31, 3936−3938.
    • (11) Gao, W.; D'Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang, J. Multi-Fuel Driven Janus Micromotors. Small 2013, 9, 467−471.
    • (12) Gao, W.; Pei, A.; Wang, J. Water-Driven Micromotors. ACS Nano 2012, 6 (9), 8432−8438.
    • (13) Li, J.; Singh, V. V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R.; Gao, W.; Jurado-sanchez, B.; Fedorak, Y.; Wang, J.; et al.
    • Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano 2014, 11 (8), 11118−11125.
    • (14) Wang, S.; Wu, N. Selecting the Swimming Mechanisms of Colloidal Particles: Bubble Propulsion versus Self-Diffusiophoresis.
    • Langmuir 2014, 30, 3477−3486.
    • (15) Gao, W.; Feng, X.; Pei, A.; Gu, Y.; Li, J.; Wang, J. SeawaterDriven Magnesium Based Janus Micromotors for Environmental Remediation. Nanoscale 2013, 5, 4696−4700.
    • (16) Simmchen, J.; Baeza, A.; Ruiz, D.; Esplandiu, M. J.; Vallet-Regí, M. Asymmetric Hybrid Silica Nanomotors for Capture and Cargo Transport: Towards a Novel Motion-Based DNA Sensor. Small 2012, 8 (13), 2053−2059.
    • (17) Golestanian, R.; Liverpool, T. B.; Ajdari, A. Designing Phoretic Micro- and Nano-Swimmers. New J. Phys. 2007, 9 (5), 126−126.
    • (18) Ebbens, S.; Gregory, D. A.; Dunderdale, G.; Howse, J. R.; Ibrahim, Y.; Liverpool, T. B.; Golestanian, R. Electrokinetic Effects in Catalytic Platinum-Insulator Janus Swimmers. Europhys. Lett. 2014, 106 (5), 58003.
    • (19) Howse, J.; Jones, R.; Ryan, A.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007, 99 (4), 8−11.
    • (20) Manjare, M.; Yang, B.; Zhao, Y. P. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors.
    • Phys. Rev. Lett. 2012, 109, 1−5.
    • (21) Fletcher, N. H. Size Effect in Heterogeneous Nucleation. J.
    • Chem. Phys. 1958, 29, 572.
    • (22) Ebbens, S. J.; Howse, J. R. Direct Observation of the Direction of Motion for Spherical Catalytic Swimmers. Langmuir 2011, 27 (20), 12293−12296.
    • (23) Ebbens, S.; Tu, M.-H.; Howse, J. R.; Golestanian, R. Size Dependence of the Propulsion Velocity for Catalytic Janus-Sphere Swimmers. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2012, 85 (2), 020401.
    • (24) Dunderdale, G.; Ebbens, S.; Fairclough, P.; Howse, J. The Importance of the Mean-Squared Displacement in Distinguishing Nanopropulsion. Langmuir 2012, 28 (30), 10997−11006.
    • (25) Ebbens, S.; Jones, R. A. L.; Ryan, A. J.; Golestanian, R.; Howse, J. R. Self-Assembled Autonomous Runners and Tumblers. Phys. Rev. E 2010, 82 (1), 6−9.
    • (26) Wang, H.; Zhao, G.; Pumera, M. Beyond Platinum: BubblePropelled Micromotors Based on Ag and MnO2 Catalysts. J. Am.
    • Chem. Soc. 2014, 136, 2719−2722.
    • (27) Wilson, D. A.; de Nijs, B.; van Blaaderen, A.; Nolte, R. J. M.; van Hest, J. C. M. Fuel Concentration Dependent Movement of Supramolecular Catalytic Nanomotors. Nanoscale 2013, 5 (4), 1315−1318.
    • (28) Van Den Heuvel, M. G. L.; Bolhuis, S.; Dekker, C. Persistence Length Measurements from Stochastic Single-Microtubule Trajectories. Nano Lett. 2007, 7, 3138−3144.
    • (29) Solovev, A. A.; Sanchez, S.; Pumera, M.; Mei, Y. F.; Schmidt, O.
    • Mater. 2010, 20 (15), 2430−2435.
    • (30) Sanchez, S.; Solovev, A. A.; Schulze, S.; Schmidt, O. G.
    • Chem. Commun. 2011, 47 (2), 698−700.
    • (31) Balasubramanian, S.; Kagan, D.; Hu, C.-M. J.; Campuzano, S.; Lobo-Castanon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angew. Chem., Int. Ed. 2011, 50 (18), 4161− 4164.
    • (32) Orozco, J.; Campuzano, S.; Kagan, D.; Zhou, M.; Gao, W.; Wang, J. Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters. Anal. Chem. 2011, 83, 7962− 7969.
    • (33) Campuzano, S.; Orozco, J.; Kagan, D.; Guix, M.; Gao, W.; Sattayasamitsathit, S.; Claussen, J. C.; Merkoci, A.; Wang, J. Bacterial Isolation by Lectin-Modified Microengines. Nano Lett. 2012, 12 (1), 396−401.
    • (34) Gao, W.; Uygun, A.; Wang, J. Hydrogen-Bubble-Propelled ZincBased Microrockets in Strongly Acidic Media. J. Am. Chem. Soc. 2012, 134 (2), 897−900.
    • (35) Zhao, G.; Wang, H.; Khezri, B.; Webster, R. D.; Pumera, M.
    • Influence of Real-World Environments on the Motion of Catalytic Bubble-Propelled Micromotors. Lab Chip 2013, 13 (15), 2937−2941.
    • (36) Sanchez, S.; Solovev, A. A.; Harazim, S. M.; Schmidt, O. G.
    • Microbots Swimming in the Flowing Streams of Microfluidic Channels. J. Am. Chem. Soc. 2011, 133 (4), 701−703.
    • (37) Kuralay, F.; Sattayasamitsathit, S.; Gao, W.; Uygun, A.; Katzenberg, A. Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-in Boronic-Acid Recognition for Isolating Sugars and Cells. J. Am. Chem. Soc. 2012, 134, 15217−15220.
    • (38) Sanchez, S.; Ananth, A. N.; Fomin, V. M.; Viehrig, M.; Schmidt, O. G. Superfast Motion of Catalytic Microjet Engines at Physiological Temperature. J. Am. Chem. Soc. 2011, 133 (38), 14860−14863.
    • (39) Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Efficient Bubble Propulsion of Polymer-Based Microengines in Real-Life Environments. Nanoscale 2013, 5 (19), 8909−8914.
    • (40) Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. J. Am. Chem. Soc. 2011, 133 (31), 11862−11864.
    • (41) Reddy, N. K.; Clasen, C. Self-Propelling Micro-Disks. KoreaAustralia Rheol. J. 2014, 26 (1), 73−79.
    • (42) Agrawal, A.; Dey, K. K.; Paul, A.; Basu, S.; Chattopadhyay, A.
    • Chemical Locomotives Based on Polymer Supported Catalytic Nanoparticles. J. Phys. Chem. C 2008, 112 (8), 2797−2801.
    • (43) Mortimer, S. T.; Swan, M. A.; Mortimer, D. Fractal Analysis of Capacitating Human Spermatozoa. Hum. Reprod. 1996, 11 (5), 1049− 1054.
    • (44) Mandelbrot, B. B. The Fractal Geometry of Nature. Am. J. Phys.
    • (45) Witten, T. A.; Sander, L. M. Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon. Phys. Rev. Lett. 1981, 47 (19), 1400− 1403.
    • (46) Poon, W. C. K.; Pirie, A. D.; Pusey, P. N. Gelation in ColloidPolymer Mixtures. Faraday Discuss. 1995, 101, 65.
    • (47) Vicsek, T.; Cserző, M.; Horvat́h, V. K. Self-Affine Growth of Bacterial Colonies. Phys. A (Amsterdam, Neth.) 1990, 167 (2), 315− 321.
    • (48) Takahashi, A.; Kita, R.; Shinozaki, T.; Kubota, K.; Kaibara, M.
    • Real Space Observation of Three-Dimensional Network Structure of Hydrated Fibrin Gel. Colloid Polym. Sci. 2003, 281 (9), 832−838.
    • (49) Katz, M. J.; George, E. B. Fractals and the Analyisis of Growth Paths. Bull. Math. Biol. 1985, 47 (l), 273−286.
    • (50) Li, D. C.; Banon, S.; Biswal, S. L. Bending Dynamics of DNALinked Colloidal Particle Chains. Soft Matter 2010, 6 (17), 4197− 4204.
    • (51) Kagan, D.; Campuzano, S.; Balasubramanian, S.; Kuralay, F.; Flechsig, G. U.; Wang, J. Functionalized Micromachines for Selective and Rapid Isolation of Nucleic Acid Targets from Complex Samples.
    • Nano Lett. 2011, 11, 2083−2087.
  • No similar publications.

Share - Bookmark

Cite this article