LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: VBRI press
Languages: English
Types: Article
Subjects: F100
In view of the continuous decline in fossil fuel reserves, at a time when energy demands are steadily increasing, a diverse range of emerging nanotechnologies promise to secure modern solutions to the prehistoric energy problem. Each one of those distinct approaches capitalizes on different principles, concepts and methodologies to address different application requirements, but their common objective is to open a window to a sustainable energy future. Consequently, they all deserve substantial (though not necessarily equal) consideration from the scientific and engineering community. In this review we present bottom-up strategies that show great promise for the development of a new generation of advanced materials for energy applications without compromising the public safety or the environment.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Schalkwijk, W.V. Nature Materials 2005, 4,366. DOI: 10.1038/nmat1368 Tiwari, A.; Valyukh, S. (Eds), In Advanced Energy Materials, WILEY-Scrivener, USA, 2014. Tiwari, A.; Mishra, A.K.; Kobayashi,H.; Turner, A.P.F. (Eds.), In Intelligent Nanomaterials, WILEY-Scrivener, USA, 2012.
    • 2. Guo, Y.G.; Hu, J.S.; Wan, L.J. Advanced Materials 2008, 20, 2878. DOI: 10.1002/adma.200800627
    • 3. Kucinskis, G.; Bajars, G.; Kleperis, J. Journal of Power Sources 2013,240, 66. DOI: 10.1016/j.jpowsour.2013.03.160
    • 4. Ji, L.W.; Lin, Z.; Alcoutlabi, M.; Zhang, X.W. Energy and Environmental Science 2011,4, 2682. DOI: 10.1039/C0EE00699H
    • 5. Simon, P.; Gogotsi Y. Nature Materials 2008,7, 845. DOI: 10.1038/nmat2297
    • 6. Kamat, P.V. Journal of Physical Chemistry C 2007,111, 2834. DOI: 10.1021/jp066952u
    • 7. Zuttel, A.; Sudan, P.; Mauron, P.; Kiyobayashi, T.; Emmenegger, C.; Schlapbach, L. International Journal of Hydrogen Energy 2002,27, 203. DOI: 10.1016/S0360-3199(01)00108-2
    • 8. Bonnemann, H. European Journal of Inorganic Chemistry 2001,10,2455. DOI: 10.1002/1099-0682(200109)
    • 9. Gutfleish, O.; Willard, M.A.; Bruck, E.; Chen, C.H.; Sankar, S.G.; Liu J. P. Advanced Materials, 2011,23, 821. DOI: 10.1002/adma.201002180
    • 10. Garces, J.M.; Moll, D.J.; Bicerano, J.; Fibiger, R.; McLeod, D.G. Advanced Materials 2000,12, 1835. DOI: 10.1002/1521-4095(200012)
    • 11. Ray, S.S.; Okamoto, M. Prog. Polym. Sci. 2003,28, 1539. DOI: 10.1016/j.progpolymsci.2003.08.002
    • 12. Balazs, A.C.; Emrick, T.; Russell, T.P. Science, 2006, 314, 1107. DOI: 10.1126/science.1130557
    • 13. Crosby, A.J.; Lee, J. Y. Polym. Rev 2007,47, 217. DOI: 10.1080/15583720701271278
    • 14. Paul, D.R.; Robenson, L.M. Polymer 2008,49, 3187. DOI: 10.1016/j.polymer.2008.04.017
    • 15. Kelarakis, A.; Yoon, K.; Sics, I.; Somani, R.H.; Hsiao, B. S.; Chu, B. Polymer 2005,46,5103. DOI: 10.1016/j.polymer.2005.04.057
    • 16. Kelarakis, A.; Yoon, K.; Somani, R.H.; Sics, I.; Chen, X.; Hsiao, B.S.; Chu, B. Polymer 2006,47,6797. DOI: 10.1016/j/polymer.2006.06.070
    • 17. Voulgaris, D.; Petridis, D. Polymer 2002, 43, 2213. DOI: 10.1016/S0032-3861(02)00039-3
    • 18. Khatua, B.B.; Lee, D.J.; Kim, H.Y.; Kim, J.K. Macromolecules 2004,37, 2454. DOI: 10.1021/ma0352072
    • 19. Kelarakis, A.; Giannelis, E.P.; Yoon, K. Polymer 2007,48, 7567. DOI: 10.1016/j.polymer.2007.11.005
    • 20. Kelarakis, A.; Yoon, K. European Polymer Journal 2008, 44, 3941. DOI: 10.1016/j.eurpolymj.2008.08.030
    • 21. Brady, R. F. Progress in Organic Coatings 2001,43,188. DOI: 10.1016/S0300-9440(01)00180-1
    • 22. Krishnan, S; Ayothi, R.; Hexemer, A.; Finlay, J.A.; Sohn, K.E.; Perry, R.; Ober, C.K.; Kramer, E. J.; Callow, M. E.; Callow, J.A.; Fischer, D.A. Langmuir 2006,22, 5075. DOI: 10.1021/la052978l
    • 23. Martinelli, E.; Agostini, S.; Galli, G.; Chiellini, E.; Glisenti, A.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Graf, K.; Bartels, F.W. Langmuir 2008, 24,13138. DOI: 10.1021/la801991k
    • 24. Fang, J.; Kelarakis, A.; Wang, D.; Giannelis, E.P.; Finlay, J.A.; Callow, M.E.; Callow, J.A. Polymer 2010, 51,2636. DOI: 10.1016/j.polymer.2010.04.024
    • 25. Sajkiewicz, P.; Wasiak, A.; Goclowski, Z. European Polymer Journal 1999, 35, 423. DOI: 10.1016/S0014-3057(98)00136-0
    • 26. Priya, L.; Jog, J. P. Journal of Polymer Science, Part B: Polymer Physics 2002,40, 1682. DOI: 10.1002/polb.10223
    • 27. Manna, S.; Batabyal, S.K.; Nandi, A. K. Journal of Physical Chemistry B 2006,46, 12318. DOI: 10.1021/jp061445y
    • 28. Ansari, S.; Giannelis, E.P. Journal of Polymer Science, Part B: Polymer Physics 2009,47,888. DOI: 10.1002/polb.21695
    • 29. Kelarakis, A.; Hayrapetyan, S.; Ansari, S.; Fang, J.; Estevez, L.; Giannelis, E.P. Polymer 2010,51,469. DOI: 10.1016/j.polymer.2009.11.057
    • 30. Kreuer, K. D. Journal of Membrane Science 2001,185, 29. DOI: 10.1016/S0376-7388(00)00632-3
    • 31. Mauritz, K.A.; Moore, R.B. Chem. Rev. 2004,104, 4535. DOI: 10.1021/cr0207123
    • 32. Kelarakis, A.; Giannelis, E.P. Langmuir 2011,27, 554. DOI: 10.1021/la103318u
    • 33. Alonso, R.H.; Estevez, L.; Lian, H.; Kelarakis, A.; Giannelis, E.P. Polymer 2009, 50, 2402. DOI:10.1016/j.polymer.2009.03.020
    • 34. Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Science 2006,311, 515. DOI: 10.1126/science.1120937
    • 35. Estevez, L.; Kelarakis, A.; Gong, Q.; Da'as, E.H.; Giannelis, E.P. J. Am.Chem. Soc. 2011,133, 6122. DOI: 10.1021/ja200244s
    • 36. Zhang, S.S. Journal of Power Sources 2007,164, 351. DOI:10.1016/j.jpowsour.2006.10.065
    • 37. Fang, J.; Kelarakis, A.; Lin, Y.W.; Kang, C.Y.; Yang, M.H.; Cheng, C.L.; Wang, Y.; Giannelis, E.P.; Tsai, L.D. Physical Chemistry Chemical Physics 2011,13, 14457. DOI: 10.1039/c1cp22017a
    • 38. Nugent, J.L.; Moganty, S.S.; Archer L.A. Adv. Mat. 2010,22, 3677. DOI: 10.1002/adma.201000898
    • 39. Moganty, S.S.; Jayaprakash, N.; Nugent, J.L.; Shen, J.; Archer, L.A. Angewandte Chemie International Edition 2010,49, 9158. DOI: 10.1002/anie.201004551
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article