LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects:

Classified by OpenAIRE into

mesheuropmc: otorhinolaryngologic diseases, sense organs
Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 4.6 MANUFACTURING THE FLEXIBLE DIGIT ......................................................... 82 4.8 GENERAL DESIGN CONSIDERATION ................................................................. 92 Chapter 5 FLEXIBLE DIGIT ANALYSIS .........................................................................94 5.4 SHAPE CHARACTERISTICS ANALYSIS ............................................................ 121 6 7 Chapter 6 SIMULATION EXPERIMENTS ...................................................................126 S. Shimachi, Y. Fujiwara and Y. Hakozaki (2004). New sensing method of force acting on instrument for laparoscopic robot surgery, Computer Assisted Radiology and Surgery. Proceedings of the 18th International Congress and Exhibition International Congress Series, 1268, p.775-780 1.
    • Brett (2004), The design of a flexible digit towards wirelsess tactile tissue feedback, International conference on Control, Automation, Robotics and Bision, China, 6-9th December 2004, (2004)
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article