LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2982
Variational and ensemble methods have been developed separately by various research and development groups and each brings its own benefits to data assimilation. In the last decade or so various ways have been developed to combine these methods, especially with the aims of improving the background error covariance matrices and of improving efficiency. The field has become confusing, even to many specialists, and so there is now a need to summarise the methods in order to show how they work, how they are related, what benefits they bring, why they have been developed, how they perform, and what improvements are pending. This paper starts with a reminder of basic variational and ensemble techniques and shows how they can be combined to give the emerging ensemble-variational (EnVar) and hybrid methods. A key part of the paper includes details of how localisation is commonly represented.\ud There has been a particular push to develop four-dimensional methods that are free of linearised forecast models. This paper attempts to provide derivations of the formulations of most popular schemes. These are otherwise scattered throughout the literature or absent. It builds on the nomenclature used to distinguish between methods, and discusses further possible developments to the methods, including the representation of model error.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amezcua J, Goodliff M, van Leeuwen PJ. 2017. A weak-constraint 4DEnsembleVar. Part I: formulation and simple model experiments. Tellus 69A: 1271564, doi: 10.1080/16000870.2016.1271564.
    • Anderson JL. 2001. An ensemble adjustment filter for data assimilation. Mon. Weather Rev. 129: 2884 - 2903.
    • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 2741 - 2758.
    • Auligne´ T, Me´ne´trier B, Lorenc AC, Buehner M. 2016. Ensemble-variational integrated localised data assimilation. Mon. Weather Rev. 144: 3677 - 3696, doi: 10.1175/MWR-D-15-0252.1.
    • Baker LH, Rudd AC, Migliorini S, Bannister RN. 2014. Representation of model error in a convective-scale ensemble prediction system. Nonlin. Proc. Geophys. 21: 19 - 39.
    • Bannister RN. 2007. Can wavelets improve the representation of forecast error covariances in variational data assimilation? Mon. Weather Rev. 135: 387 - 408.
    • Bannister RN. 2008. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast-error covariance statistics. Q. J. R. Meteorol. Soc. 134: 1971 - 1996.
    • Bannister RN. 2015. How is the balance of a forecast ensemble affected by adaptive and non-adaptive localization schemes? Mon. Weather Rev. 143: 3680 - 3699.
    • Barker DM, Huang W, Guo Y-R, Bourgeois AJ, Xiao QN. 2004. A threedimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 132: 897 - 914.
    • Beck A, Ehrendorfer M. 2005. Singular-vector-based covariance propagation in a quasigeostrophic assimilation system. Mon. Weather Rev. 133: 1295 - 1310.
    • Belo Pereira M, Berre L. 2006. The use of an ensemble approach to study the background-error covariances in a global NWP model. Mon. Weather Rev. 134: 2466 - 2489.
    • Benedetti A, Stephens GL, Tomislava V. 2003. Variational assimilation of radar reflectivities in a cirrus model. I: Model description and adjoint sensitivity studies. Q. J. R. Meteorol. Soc. 129: 277 - 300.
    • Berner J, Ha S-Y, Hacker JP, Fournier A, Snyder C. 2011. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Weather Rev. 139: 1972 - 1995.
    • Berre L. 2000. Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Weather Rev. 128: 644 - 667.
    • Berre L, Stefaˇnescu SE, Belo Pereira M. 2006. The representation of the analysis effect in three error simulation techniques. Tellus 58A: 196 - 209.
    • Berre L, Pannekoucke O, Desroziers G, Stefaˇnescu SE, Chapnik B, Raynaud L. 2007 'A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging'. In Proceedings of the ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, 11 - 13 June 2007. ECMWF: Reading, UK.
    • Berre L, Desroziers G, Raynaud L, Montroty R, Gibier F. 2009 'Use of consistent operational ensemble variational assimilation to estimate and diagnose analysis and background error covariances'. In Proceedings of the ECMWF Workshop on Diagnostics of Data Assimilation System Performance, 15 - 17 June 2009. ECMWF: Reading, UK.
    • Berre L, Varella H, Desroziers G. 2015. Modelling of flow-dependent ensemblebased background-error correlations using a wavelet formulation in 4D-Var at Me´te´o-France. Q. J. R. Meteorol. Soc. 141: 2803 - 2812, doi: 10.1002/qj.2565.
    • Biegler LT. 1997. Large-Scale Optimization with Applications: Part I: Optimization in Inverse Problems and Design. Springer-Verlag: New York, NY.
    • Bishop CH, Hodyss D. 2007. Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Q. J. R. Meteorol. Soc. 133: 2029 - 2044.
    • Bishop CH, Hodyss D. 2009a. Ensemble covariances adaptively localized with ECO-RAP, Part 1: Tests on simple error models. Tellus 61A: 84 - 96.
    • Bishop CH, Hodyss D. 2009b. Ensemble covariances adaptively localized with ECO-RAP, Part 2: A strategy for the atmosphere. Tellus 61A: 97 - 111.
    • Bishop CH, Hodyss D. 2011. Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Weather Rev. 139: 1241 - 1255.
    • Bishop CH, Satterfield EA. 2013. Hidden error variance theory. Part I: Exposition and analytic model. Mon. Weather Rev. 141: 1454 - 1468.
    • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420 - 436.
    • Bishop CH, Hodyss D, Steinle P, Sims H, Clayton AM, Lorenc AC, Barker DM, Buehner M. 2011. Efficient ensemble covariance localization in variational data assimilation. Mon. Weather Rev. 139: 573 - 580.
    • Bonavita M, Torrisi L, Marcucci F. 2008. The ensemble Kalman filter in an operational regional NWP system: Preliminary results with real observations. Q. J. R. Meteorol. Soc. 134: 1733 - 1744.
    • Bonavita M, Raynaud L, Isaksen L. 2011. Estimating background-error variances with the ECMWF ensemble of data assimilations system: Some effects of ensemble size and day-to-day variability. Q. J. R. Meteorol. Soc. 137: 423 - 434, doi: 10.1002/qj.756.
    • Bonavita M, Isaksen L, Ho´ lm EV. 2012. On the use of EDA background-error variances in the ECMWF 4D-Var. Q. J. R. Meteorol. Soc. 138: 1540 - 1559, doi: 10.1002/qj.1899.
    • Bonavita M, Ho´ lm EV, Isaksen L, Fisher M. 2016. The evolution of the ECMWF hybrid data assimilation system. Q. J. R. Meteorol.Soc. 142: 287 - 303, doi: 10.1002/qj.2652.
    • Bouttier F, Vie´ B, Nuissier O, Raynaud L. 2012. Impact of stochastic physics in a convection-permitting ensemble. Mon. Weather Rev. 140: 3706 - 3721.
    • Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE. 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134: 703 - 722.
    • Buehner M. 2005. Ensemble derived stationary and flow dependent background error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc. 131: 1013 - 1043.
    • Buehner M. 2010. Evaluation of spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Weather Rev. 140: 617 - 636.
    • Buehner M, Charron M. 2007. Spectral and spatial localization of backgrounderror correlations for data assimilation. Q. J. R. Meteorol. Soc. 133: 615 - 630.
    • Buehner M, Shlyaeva A. 2015. Scale-dependent background-error covariance localisation. Tellus 67A: 28027, doi: 10.3402/tellusa.v67.28027.
    • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B. 2010a. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and singleobservation experiments. Mon. Weather Rev. 138: 1550 - 1566.
    • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B. 2010b. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Weather Rev. 138: 1567 - 1586, doi: 10.1175/2009MWR3158.1.
    • Buehner M, Morneau J, Charette C. 2013. Four-dimensional ensemblevariational data assimilation for global deterministic weather prediction. Nonlin. Proc. Geophys. 20: 669 - 682.
    • Buehner M, McTaggart-Cowan R, Beaulne A, Charette C, Garand L, Heilliette S, Lapalme E, Laroche S, Macpherson SR, Morneau J, Zadra A. 2015a. Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Weather Rev. 143: 2532 - 2559, doi: 10.1175/MWR-D14-00354.1.
    • Buehner M, Gelaro R, Alves O, Dee DP, Kalnay E, van Leeuwen PJ, Lorenc AC, Miyoshi T, Saunders R, Schiller A. 2015b. Data assimilation methods and applications. Chapter 3 in Seamless Prediction of the Earth System: From Minutes to Months, Jones fnmS, Ruti PM. (eds.): 37 - 60. World Meteorological Organization: Geneva, Switzerland.
    • Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125: 2887 - 2908.
    • Burgers G, van Leeuwen P-J, Evensen G. 1998. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126: 1719 - 1724.
    • Caron J-F, Milewski T, Buehner M, Fillion L, Reszka M, Macpherson S, StJames J. 2015. Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part II: The regional system. Mon. Weather Rev. 143: 2560 - 2580, doi: 10.1175/MWR-D-14-00353.1.
    • Clayton AM, Lorenc AC, Barker DM. 2012. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q. J. R. Meteorol. Soc. 139: 1445 - 1461, doi: 10.1002/qj.2054.
    • C oˆte´ J, Gravel S, Me´thot A, Patioine A, Roch M, Staniforth A. 1998. The operational CMC-MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Weather Rev. 126: 1373 - 1395.
    • Courtier P, Freydier C, Geleyn J-F, Rabier F, Rochas M. 1991. 'The Arpe`ge project at Me´te´o-France'. In Proceedings of the ECMWF Workshop on Numerical Methods in Atmospheric Models, 9 - 13 September 1991. ECMWF: Reading, UK.
    • Courtier P, Thepaut J-N, Hollingsworth A. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120: 1367 - 1387.
    • Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljevic D, Hollingsworth A, Fisher M, Rabier F. 1998. The ECMWF implementation of threedimensional variational assimilation (3D-Var). Part I: Formulation. Q. J. R. Meteorol. Soc. 124: 1783 - 1807.
    • Daley R. 1991. Atmospheric Data Analysis. Cambridge University Press: Cambridge, UK.
    • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131: 1759 - 1782.
    • Deckmyn A, Berre L. 2005. A wavelet approach to representing backgrounderror covariances in a limited-area model. Mon. Weather Rev. 133: 1279 - 1294.
    • Dee DP. 2002. 'An adaptive scheme for cycling background-error variances during data assimilation'. In Proceedings of ECMWF/GEWEX Workshop on Humidity Analysis, 8 - 11 July 2002. ECMWF: Reading, UK.
    • Derber J, Bouttier F. 1999. A reformulation of the background-error covariance in the ECMWF global data assimilation system. Tellus 51A: 195 - 221.
    • Desroziers G, Berre L. 2012. Accelerating and parallelizing minimizations in ensemble and deterministic variational assimilations. Q. J. R. Meteorol. Soc. 138: 1599 - 1610.
    • Desroziers G, Camino J-T, Berre L. 2014. 4DEnVar: Link with 4D state formulation of variational assimilation and different possible implementations. Q. J. R. Meteorol. Soc. 140: 2097 - 2110, doi: 10.1002/qj.2325.
    • ECMWF. 2015. 'Documentation for the integrated forecasting system'. https://software.ecmwf.int/wiki/display/IFS/ \unhbox\voidb@x\hboxOfficial+IFS+Documentation (accessed 12 January 2017).
    • Ehrendorfer M. 2007. A review of issues in ensemble-based Kalman filtering. Meteorol. Z. 16: 795 - 818.
    • El Akkraoui A, Tre´molet Y, Todling R. 2013. Preconditioning of variational data assimilation and the use of a bi-conjugate gradient method. Q. J. R. Meteorol.Soc. 130: 731 - 741.
    • Emerick A. 2012. History Matching and Uncertainty Characterization. Lambert Academic Publishing: Saarbrucken, Germany.
    • Errera Q, Me´nard R. 2012. Technical note: spectral representation of spatial correlations in variational assimilation with grid point models and application to the Belgian Assimilation System for Chemical Observations (BASCOE). Atmos. Chem. Phys. 12: 10015 - 10031.
    • Etherton BJ, Bishop CH. 2004. Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon. Weather Rev. 132: 1065 - 1080.
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143 - 10162, doi: 10.1029/94JC00572.
    • Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53: 343 - 367.
    • Evensen G. 2007. Data Assimilation, The Ensemble Kalman Filter. SpringerVerlag: Berlin.
    • Evensen G, van Leeuwen PJ. 2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128: 1852 - 1867.
    • Fairbairn D, Pring SR, Lorenc AC, Roulstone I. 2014. A comparison of 4DVar with ensemble data assimilation methods. Q. J. R. Meteorol. Soc. 140: 281 - 294.
    • Fertig EJ, Hunt BR, Ott E, Szunyough I. 2008. Assimilating non-local observations with a local ensemble Kalman Filter. Tellus 59A: 719 - 730.
    • Fisher M. 1998. 'Development of a simplified Kalman filter', Technical Note 260. ECMWF: Reading, UK.
    • Fisher M. 2003. 'Background error covariance modelling'. In Proceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, 8 - 12 September 2003. ECMWF: Reading, UK.
    • Fisher M, Andersson A. 2001. 'Developments in 4D-Var and Kalman filtering', Technical Note 347. ECMWF: Reading, UK.
    • Fisher M, Courtier P. 1995. Estimating the Covariance Matrices of Analysis and Forecast Error in Variational Data Assimilation. Technical Memo 220. ECMWF: Reading, UK.
    • Fresnay S, Hally A, Garnaud C, Richard E, Lambert D. 2012. Heavy precipitation events in the Mediterranean: Sensitivity to cloud physics parameterisation uncertainties. Nat. Hazards Earth Syst. Sci. 12: 2671 - 2688.
    • Gaspari G, Cohn SE. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723 - 757.
    • Gauthier P, Charette C, Fillion L, Koclas P, Laroche S. 1999. Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis. Atmosphere Ocean 37: 103 - 156.
    • Gauthier P, Tanguay M, Laroche S, Pellerin S, Morneau J. 2007. Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada. Mon. Weather Rev. 135: 2339 - 2354.
    • Ge G, Gao J, Xue M. 2012. Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol. 29: 1075 - 1092.
    • Gebhardt C, Theis SE, Paulat M, Bouallgue ZB. 2011. Uncertainties in COSMODE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res. 100: 168 - 177.
    • Goodliff M, Amezcua J, van Leeuwen PJ. 2015. Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing nonlinearity. Tellus 67A: 26928, doi: 10.3402/tellusa.v67.26928.
    • Goodliff M, Amezcua J, van Leeuwen PJ. 2017. A weak-constraint 4DEnsembleVar. Part II: experiments with larger models. Tellus 69A: 1271565, doi: 10.1080/16000870.2016.1271565.
    • Greybush SJ, Kalnay E, Miyoshi T, Ide K, Hunt BR. 2011. Balance and ensemble Kalman filter localization techniques. Mon. Weather Rev. 139: 511 - 522.
    • Gustafsson N. 2007. Discussion on '4D-Var or ensemble Kalman filter?' Tellus 59A: 774 - 777.
    • Gustafsson N, Bojarova J. 2014. Four-dimensional ensemble variational (4DEn-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM). Nonlin. Proc. Geophys. 21: 745 - 762, doi: 10.5194/npg-21-745- 2014.
    • Gustafsson N, Berre L, Hornquist S, Huang XY, Lindskog M, Navascues B, Mogensen KS, Thornsteinsson S. 2001. Three-dimensional variational data assimilation for a limited-area model. Tellus 53A: 425 - 446.
    • Gustafsson N, Bojarova J, Vigne O. 2014. A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM). Nonlin. Proc. Geophys. 21: 303 - 323.
    • Haben S, Lawless AS, Nichols NK. 2011. Conditioning of incremental variational data assimilation, with application to the Met Office system. Tellus 63A: 782 - 792.
    • Hacker JP, Snyder C, Ha S-Y, Pocernich M. 2011. Linear and non-linear response to parameter variations in a mesoscale model. Tellus 63A: 429 - 444.
    • Hamill TM. 2006. Ensemble-based atmospheric data assimilation. In Predictability of Weather and Climate, Palmer TN, Hagedorn R. (eds.): 124 - 156. Cambridge University Press: Cambridge, UK.
    • Hammill TM, Snyder C. 2000. A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev. 128: 2905 - 2919.
    • Hamill TM, Whitaker JS. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Weather Rev. 133: 3132 - 3147.
    • Hamill TM, Whitaker JS, Synder C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129: 2776 - 2790.
    • Hamill TM, Whitaker JS, Fiorino M, Benjamin SG. 2011a. Global ensemble predictions of 2009's tropical cyclones initialized with an ensemble Kalman filter. Mon. Weather Rev. 139: 668 - 688.
    • Hamill TM, Whitaker JS, Kleist DT, Fiorino M, Benjamin SG. 2011b. Predictions of 2010's tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Weather Rev. 139: 3243 - 3247.
    • Hayden CM, Purser RJ. 1995. Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteorol. 34: 3 - 13.
    • Hogan TF, Rosmond TE, Gelaro R. 1992. 'The NOGAPS forecast model: A technical description', Report AD-A247 216. Naval Research Laboratory: Monterey, CA. www.dtic.mil/dtic/tr/fulltext/u2/a247216.pdf (accessed 12 January 2017).
    • Houtekamer PL, Mitchell HL. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126: 796 - 811.
    • Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129: 123 - 137.
    • Houtekamer PL, Mitchell HL. 2005. Ensemble Kalman filtering. Q. J. R. Meteorol. Soc. 131: 3269 - 3289.
    • Houtekamer PL, Zhang F. 2016. Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 144: 4489 - 4532.
    • Houtekamer PL, Lefaivre L, Derome J, Ritchie H, Mitchell HL. 1996. A system simulation approach to ensemble prediction. Mon. Weather Rev. 124: 1225 - 1242.
    • Houtekamer PL, Pekkerin G, Buehner M, Charron M, Spacek L, Hansen B. 2005. Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Weather Rev. 133: 604 - 620.
    • Houtekamer PL, Deng X, Mitchell HL, Baek S-J, Gagnon N. 2014. Higher resolution in an operational ensemble Kalman filter. Mon. Weather Rev. 142: 1143 - 1162.
    • Howes K. 2016. Accounting for model error in four-dimensional variational data assimilation. PhD thesis, Department of Mathematics, University of Reading: Reading, UK.
    • Hunt BR, Kalnay E, Kostelich EJ, Ott E, Patil DJ, Sauer T, Szunyogh I, Yorke JA, Zimin AV. 2004. Four-dimensional ensemble Kalman filtering. Tellus 56A: 273 - 277.
    • Ide K, Courtier P, Ghil M, Lorenc AC. 1997. Unified notation for data assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn. 75: 181 - 189.
    • Ingleby NB. 2001. The statistical structure of forecast errors and its representation in the Met Office global three-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 127: 209 - 231.
    • Isaksen L, Bonavita M, Buizza R, Fisher M, Haseler J, Leutbecher M, Raynaud L. 2010. Ensemble of Data Assimilations at ECMWF, Technical Memorandum 260. ECMWF: Reading, UK.
    • Jazwinski AH. 1970. Stochastic Processes and Filtering Theory, Academic Press: New York, NY.
    • Kalnay E. 2002. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press: Cambridge, UK.
    • Kalnay E, Li H, Miyoshi T, Yang S-C, Ballabrera-Poy J. 2007. 4D-Var or ensemble Kalman filter? Tellus 59A: 758 - 773.
    • Kepert JD. 2009. Covariance localization and balance in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135: 1157 - 1176.
    • Kleist DT, Ide K. 2015a. An OSSE-based evaluation of hybrid variationalensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Weather Rev. 143: 433 - 451.
    • Kleist DT, Ide K. 2015b. An OSSE-based evaluation of hybrid variationalensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Weather Rev. 143: 452 - 470.
    • Kleist DT, Parrish DF, Derber JC, Treadon R, Errico RM, Yang R. 2009. Improving incremental balance in the GSI 3DVAR analysis system. Mon. Weather Rev. 137: 1046 - 1060.
    • Kuhl DD, Rosmond TE, Bishop CH, McLay J, Baker NL. 2013. Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Weather Rev. 141: 2740 - 2758.
    • Lawless AS. 2010. A note on the analysis error associated with 3D-FGAT. Q. J. R. Meteorol. Soc. 136: 1094 - 1098, doi: 10.1002/qj.619.
    • Lawrence AR, Leutbecher M, Palmer TN. 2009. The characteristics of Hessian singular vectors using an advanced data assimilation scheme. Q. J. R. Meteorol. Soc. 135: 1117 - 1132.
    • Le Dimet F-X, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A: 97 - 110.
    • Lee M-S, Barker D, Huang W, Kuo Y-H. 2004. 'First guess at appropriate time (FGAT) with WRF 3D-Var'. In Preprints for WRF/MM5 Users' Workshop, 22 - 25 June 2004. Boulder, CO. http://www.mmm.ucar.edu/mm5/workshop/ ws04/Session5/Lee.Mi-Seon1.pdf (accessed 12 January 2017).
    • van Leeuwen PJ. 1999. Comment on 'Data assimilation using an ensemble Kalman filter technique'. Mon. Weather Rev. 127: 1374 - 1377.
    • van Leeuwen PJ. 2009. Particle filtering in geophysical systems. Mon. Weather Rev. 137: 4089 - 4114, doi: 10.1175/2009MWR2835.1.
    • van Leeuwen PJ, Evensen G. 1996. Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124: 2898 - 2913.
    • Leith CE. 1993. Numerical models of weather and climate. Plasma Phys. Controlled Fusion 35: 919 - 927.
    • Liu DC, Nocedal J. 1989. On the limited memory BFGS method for large scale optimisation. Math. Program. 45: 503 - 528.
    • Liu C, Xiao Q. 2013. An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with advanced research WRF using real data. Mon. Weather Rev. 141: 2721 - 2739, doi: 10.1175/MWR-D-12-00130.1.
    • Liu C, Xue M. 2016. Relationships among four-dimensional hybrid ensemblevariational data assimilation algorithms with full and approximate ensemble localization. Mon. Weather Rev. 144: 591 - 606, doi: 10.1175/MWR-D-15- 0203.1.
    • Liu C, Xiao Q, Wang B. 2008. An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formation and preliminary test. Mon. Weather Rev. 136: 3363 - 3373.
    • Liu C, Xiao Q, Wang B. 2009. An ensemble-based four-dimensional variational data assimilation scheme. Part II: Observing system simulation experiments with the advanced research WRF (ARW). Mon. Weather Rev. 137: 1687 - 1704.
    • Lorenc AC. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112: 1177 - 1194.
    • Lorenc AC. 2003. The potential of the ensemble Kalman filter for NWP - a comparison with 4D-Var. Q. J. R. Meteorol. Soc. 129: 3183 - 3203.
    • Lorenc AC. 2013. 'Recommended nomenclature for EnVar data assimilation methods'. In WGNE Blue Book Research Activities in Atmospheric and Oceanic Modelling, section 01: 7 - 8. WMO: Geneva, Switzerland. http://www.wcrp-climate.org/WGNE/BlueBook/2013/individual-articles/ 01 Lorenc Andrew EnVar nomenclature.pdf (accessed 23 December 2016).
    • Lorenc AC, Ballard SP, Bell RS, Ingleby NB, Andrews PLF, Barker DM, Bray JR, Clayton AM, Dalby T, Li D, Payne TJ, Saunders FW. 2000. The Met Office global three-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 126: 2991 - 3012.
    • Lorenc AC, Bowler NE, Clayton AM, Pring SR, Fairbairn D. 2015. Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Weather Rev. 143: 212 - 229.
    • Lorenz EN. 1996. 'Predictability: A problem partly solved'. In Proceedings of the Seminar on Predictability, Vol. 1. ECMWF: Reading, UK.
    • Lorenz EN. 2005. Designing chaotic models. J. Atmos. Sci. 62: 1574 - 1587.
    • Lorenz EN. 1963. Deterministic non-periodic flow. J. Atmos. Sci. 20: 130 - 148.
    • Me´ne´trier M, Auligne´ T. 2015. An overlooked issue of variational data assimilation. Mon. Weather Rev. 143: 3925 - 3930, doi: 10.1175/MWRD-14-00404.1.
    • Meng Z, Zhang F. 2007. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Weather Rev. 135: 1403 - 1423.
    • Meng Z, Zhang F. 2008a. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVar in a real-data case study. Mon. Weather Rev. 136: 522 - 540.
    • Meng Z, Zhang F. 2008b. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Weather Rev. 136: 3671 - 3682.
    • Meng Z, Zhang F. 2012. Ensemble-based data assimilation. In Encyclopedia of Atmospheric Sciences (2nd edn), North GR, Pyle JA, Zhang F. (eds.), Vol. 2: 241 - 247. Elsevier: Amsterdam, Netherlands.
    • Morss RE, Emanuel KA. 2002. Influence of added observations on analysis and forecast errors: Results from idealized systems. Q. J. R. Meteorol. Soc. 128: 285 - 321.
    • Navon IM, Daescu DN, Liu Z. 2005. The impact of background error on incomplete observations for 4D-Var data assimilation with the FSU GSM. In Computational Science - ICCS, 2: 837-844. Atlanta, GA.
    • NCEP Environmental Modeling Center. The Global Forecast System (GFS) - Global Spectral Model (GSM). NOAA, NCEP: College Park, MD. http://www.emc.ncep.noaa.gov/GFS/doc.php (accessed 13 January 2017).
    • Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G-Y, Thornton P, Vertenstein M, Yang Z-L, Zeng X. 2004. 'Technical description of the Community Land Model (CLM)', Technical Note NCAR/TN-461+STR. NCAR: Boulder, CO. http://www.cgd.ucar. edu/tss/clm/distribution/clm3.0/TechNote/CLM Tech Note.pdf (accessed 13 January 2017).
    • Ott E, Hunt BR, Szunyough I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A: 415 - 428.
    • Paige CC, Saunders MA. 1975. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12: 617 - 629.
    • Palmer TN. 2012. Towards the probabilistic Earth system simulator: A vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138: 841 - 861.
    • Palmer TN, Williams P. 2010. Stochastic Physics and Climate Modelling. Cambridge University Press: Cambridge, UK.
    • Pan Y, Zhu K, Xue M, Wang X, Hu M, Benjamin SG, Weygandt SS, Whitaker JS. 2014. A GSI-based coupled EnSRF - En3DVar hybrid data assimilation system for the operational rapid refresh model: Tests at a reduced resolution. Mon. Weather Rev. 142: 3756 - 3780.
    • Park SK, Zupanski D. 2003. Four-dimensional variational data assimilation for mesoscale and storm scale applications. Meteorol. Atmos. Phys. 82: 173 - 208.
    • Parrish DF, Derber JC. 1992. The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Weather Rev. 120: 1747 - 1793.
    • Penny SG. 2014. The hybrid local ensemble transform Kalman filter. Mon. Weather Rev. 142: 2139 - 2149, doi: 10.1175/mwr-d-13-00131.1.
    • Petrie RE, Bannister RN. 2011. A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in highresolution variational data assimilation. Comput. Fluids 46: 387 - 391.
    • Pham DT. 2001. Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Weather Rev. 129: 1194 - 1207.
    • Poterjoy J, Zhang F. 2014. Intercomparison and coupling of ensemble and four- dimensional variational data assimilation methods for the analysis and forecasting of hurricane Karl (2010). Mon. Weather Rev. 142: 3347 - 3364.
    • Poterjoy J, Zhang F. 2015. Systematic comparison for four-dimensional data assimilation methods with and without the tangent linear model using hybrid background-error covariance: E4DVar versus 4DVar. Mon. Weather Rev. 143: 1601 - 1621.
    • Rabier F. 2005. Overview of global data assimilation developments in numerical weather prediction centres. Q. J. R. Meteorol. Soc. 131: 3215 - 3233.
    • Rabier F, Ja¨rvinen H, Klinker E, Mahfouf J-F, Simmons A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 126: 1143 - 1170.
    • Rawlins F, Ballard SP, Bovis KJ, Clayton AM, Li D, Inverarity GW, Lorenc AC, Payne TJ. 2007. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 133: 347 - 362.
    • Raynaud L, Berre L, Desroziers G. 2011. An extended specification of flowdependent background-error variances in the Me´te´o-France global 4D-Var system. Q. J. R. Meteorol. Soc. 137: 607 - 619, doi: 10.1002/qj.795.
    • Raynaud L, Berre L, Desroziers G. 2012. Accounting for model error in the Me´te´o-France ensemble data assimilation system. Q. J. R. Meteorol. Soc. 138: 249 - 262.
    • Rhodin A. 2015. 'Multi Scale VarEnKF Localisation using Wavelets'. In Presentation at International Symposium on Data Assimilation, RIKEN, February 2015. Kobe, Japan. http://www.data-assimilation.riken. jp/isda2015/program/pdf/8-4.pdf (accessed 13 January 2017).
    • Rodgers CD. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing: Singapore.
    • Sasaki Y. 1970. Some basic formalisms in numerical variational analysis. Mon. Weather Rev. 98: 875 - 883.
    • Schlatter TW. 2000. Variational assimilation of meteorological observations in the lower atmosphere: A tutorial on how it works. J. Atmos. Sol. Terr. Phys. 62: 1057 - 1070.
    • Schwartz CS, Liu Z. 2014. Convection-permitting forecasts initialized with continuously cycling limited-area 3DVar, ensemble Kalman filter and 'hybrid' variational-ensemble data assimilation systems. Mon. Weather Rev. 142: 716 - 737.
    • Schwartz CS, Liu Z, Lin H-C, McKeen SA. 2012. Simultaneous threedimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. J. Geophys. Res. 117: D13202, doi: 10.1029/2011JD017383.
    • Schwartz CS, Liu Z, Huang X-Y, Kuo Y-H. 2013. Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Weather Rev. 141: 4350 - 4372.
    • Schwartz CS, Liu Z, Lin H-C, Cetola JD. 2014. Assimilating aerosol observations with a 'hybrid' variational-ensemble data assimilation system. J. Geophys. Res. Atmos. 119: 4043 - 4069, doi: 10.1002/2013JD020937.
    • Shutts G. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 3079 - 3102.
    • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG. 2005. 'A description of the advanced research WRF version 2', Technical Note NCAR/TN-486+STR. NCAR: Boulder, CO.
    • Stensrud DJ, Bao J-W, Warner TT. 2000. Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Weather Rev. 128: 2077 - 2107.
    • Stewart LM, Dance SL, Nichols NK, Eyre JR, Cameron J. 2014. Estimating interchannel observation-error correlations for IASI radiance data in the Met Office system. Q. J. R. Meteorol. Soc. 140: 1236 - 1244, doi: 10.1002/qj.2211.
    • Stiller O. 2009. Efficient moist physics schemes for data assimilation. II: Deep convection. Q. J. R. Meteorol. Soc. 135: 721 - 738, doi: 10.1002/qj.362.
    • Stiller O, Ballard SP. 2009. Efficient moist physics schemes for data assimilation. I: Large-scale clouds and condensation. Q. J. R. Meteorol. Soc. 135: 707 - 720, doi: 10.1002/qj.400.
    • Szunyogh I, Kostelich EJ, Gyarmati G, Patil DJ, Hunt BR, Kalnay E, Ott E, Yorke JA. 2005. Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. Tellus 57A: 528 - 545.
    • Szunyogh I, Kostelich EJ, Gyarmati G, Kalnay E, Hunt BR, Ott E, Satterfield E, Yorke JA. 2008. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus 60A: 113 - 130.
    • Talagrand O, Courtier P. 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc. 113: 1311 - 1328.
    • Tarantola A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM: Philadelphia, PA.
    • Temperton C. 1988. Implicit normal mode initialization. Mon. Weather Rev. 116: 1013 - 1031.
    • Thepaut J-N, Courtier P. 1991. Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Q. J. R. Meteorol. Soc. 117: 1225 - 1254.
    • Tian X, Xie Z, Dai A. 2008. An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res. 113: D21124, doi: 10.1029/2008JD010358.
    • Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS. 2003. Ensemble square root filters. Mon. Weather Rev. 131: 1485 - 1490.
    • Tre´molet Y. 2006. Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132: 2483 - 2504.
    • Tre´molet Y. 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc. 133: 1267 - 1280.
    • Tribbia JJ, Baumhefner DP. 2004. Scale interactions and atmospheric predictability: An updated perspective. Mon. Weather Rev. 132: 703 - 713.
    • Unde´n P, Rontu L, Ja¨rvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Nielsen NW, Ødegaard V, Rodriguez E, Rummukainen M, Ro˜o˜m R, Sattler K, Sass BH, Savija¨rvi H, Schreur BW, Sigg R, The H, Tijm A. 2002. 'HIRLAM-5 scientific documentation (2002)', http://hirlam.org/index.php/hirlam-documentation (accessed 13 January 2017).
    • Uppala SM, Ka˚llberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosazac M, Fisher M, Fuentes M, Hagemann S, Ho´ lm EV, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KA, Untch A, Vasiljevic D, Viterbo P, Woollen J. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131: 2961 - 3012.
    • Vie´ B, Molinie´ G, Nuissier O, Vincendon B, Ducrocq V, Bouttier F, Richard E. 2012. Hydro-meteorological evaluation of a convection-permitting ensemble prediction system for Mediterranean heavy precipitating events. Nat. Hazards Earth Syst. Sci. 12: 2631 - 2645.
    • Waller JA, Dance SL, Lawless AS, Nichols NK. 2014. Estimating correlated observation-error statistics using an ensemble transform Kalman filter. Tellus 66A: 23294, doi: 10.3402/tellusa.v66.23294.
    • Wang X. 2010. Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Weather Rev. 138: 2990 - 2995.
    • Wang X. 2011. Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts. Weather and Forecasting 26: 868 - 884.
    • Wang X, Lei T. 2014. GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Weather Rev. 142: 3303 - 3325.
    • Wang X, Hamill TM, Whitaker JS, Bishop CH. 2007a. A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes. Mon. Weather Rev. 135: 1055 - 1076.
    • Wang X, Snyder C, Hamill TM. 2007b. On the theoretical equivalence of differently proposed ensemble-3DVar hybrid analysis schemes. Mon. Weather Rev. 135: 222 - 227.
    • Wang X, Barker DM, Snyder C, Hamill TM. 2008a. A hybrid ETKF-3D-Var data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev. 136: 5116 - 5131.
    • Wang X, Barker DM, Snyder C, Hamill TM. 2008b. A hybrid ETKF-3D-Var data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Weather Rev. 136: 5132 - 5147.
    • Wang XG, Hamill TM, Whitaker JS, Bishop CH. 2009. A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales. Mon. Weather Rev. 137: 3219 - 3232.
    • Wang X, Parrish D, Kleist D, Whitaker J. 2013. GSI 3DVar-based ensemblevariational hybrid data assimilation for NCEP global forecast system: single-resolution experiments. Mon. Weather Rev. 141: 4098 - 4117.
    • Wang H, Huang X-Y, Sun J, Xu D, Zhang M, Fan S, Zhong J. 2014. Inhomogeneous background error modeling for WRF-var using the NMC method. J. Appl. Meterol. Climatol. 53: 2287 - 2309.
    • Weaver AT, Deltel C, Machu E, Ricci S, Daget N. 2005. A multivariate balance operator for variational ocean data assimilation. Q. J. R. Meteorol. Soc. 131: 3605 - 3626.
    • Whitaker J, Hamill TM. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130: 1913 - 1924.
    • Whitaker J, Compo GP, Wei X, Hamill TM. 2002. Reanalysis without radiosondes using ensemble data assimilation. Mon. Weather Rev. 132: 1190 - 1200.
    • Whitaker J, Hamill TM, Wei X, Song Y, Toth Z. 2008. Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev. 436: 463 - 482.
    • Wunsch C. 2012. Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press: Cambridge, UK.
    • Xu Q. 1996. Generalized adjoint for physical processes with parameterized discontinuities. Part I: Basic issues and heuristic examples. J. Atmos. Sci. 53: 1123 - 1142.
    • Zˇagar N, Gustafsson N, Ka¨lle´n E. 2004. Dynamical response of equatorial waves in four-dimensional variational data assimilation. Tellus 56A: 29 - 46.
    • Zangl G, Reinert D, Ripodas P, Baldauf M. 2015. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 141: 563 - 579.
    • Zhang M, Zhang F. 2012. E4DVar: coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Weather Rev. 140: 587 - 600.
    • Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 132: 1238 - 1253.
    • Zhang F, Zhang M, Hansen JA. 2009. Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci. 26: 1 - 8.
    • Zhang M, Zhang F, Huang X-Y, Zhang X. 2011. Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Weather Rev. 139: 566 - 572.
    • Zhang F, Meng Z, Aksoy A. 2016. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Weather Rev. 134: 722 - 736.
    • Zhang F, Zhang M, Poterjoy J. 2013. E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Weather Rev. 141: 900 - 917.
    • Zupanski D. 1997. A general weak constraint applicable to operational 4D-Var data assimilation systems. Mon. Weather Rev. 125: 2274 - 2291.
    • Zupanski M. 2005. Maximum likelihood ensemble filter: theoretical aspects. Mon. Weather Rev. 133: 1710 - 1726.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article