LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, QD
Identifiers:doi:10.1063/1.4920945
We propose an expression of the hopping rate between localized states in semiconducting disordered polymers that contains the most used rates in the literature as special cases. We stress that these rates cannot be obtained directly from electron transfer rate theories as it is not possible to define diabatic localized states if the localization is caused by disorder, as in most polymers, rather than nuclear polarization effects. After defining the separate classes of accepting and inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We show that, under the appropriate limits, this expression reduces to (i) single-phonon rate expression or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits from a more general expression is useful to interpolate between them, to validate the assumptions of each limiting case, and to define the simplest rate expression that still captures the main features of the charge transport. When the rate expression is fed with a range of realistic parameters the deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward lower energy states, due to the energy gap law.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Tessler, N.; Preezant, Y.; Noam Rappaport, N.; Roichman, Y. Adv. Mater. 2009, 21, 2741.
    • (2) Geoghegan, M.; Hadziioannou, G. Polymer Electronics; Oxford University Press: Oxford, 2013.
    • (3) Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. Nat. Mater. 2013, 12, 1038.
    • (4) Sirringhaus, H. Adv. Mater. 2005, 17, 2411.
    • (5) Bassler, H. Phys. Status Sol. B 1993, 175, 15.
    • (6) Dunlap, D. H.; Kenkre, V. M. Chem. Phys, 1993, 178, 67.
    • (7) Baranovski, S. E. Charge Transport in Disordered Solids with Applications in Electronics; Wiley: West Sussex, 2006.
    • (8) Vukmirovic, N.; Wang, L. W. Nano Letters 2011, 9, 3996.
    • (9) Vukmirovic, N.; Wang, L. W. J. Phys. Chem. B 2009, 113, 409.
    • (10) Cheung, D. L.; McMahon, D. P.; Troisi, A. J. Am. Chem. Soc. 2009, 131, 11179.
    • (11) Qin, T.; Troisi, A. J. Am. Chem. Soc. 2013, 135, 11247.
    • (12) Liu, T.; Troisi, A. Adv. Funct. Mater. 2014, 24, 925.
    • (13) Athanasopoulos, S.; Kirkpatrick, J.; Martinez, D.; Frost, J. M.; Foden, C. M.; Walker, A. B.; Nelson, J. Nano Letters 2007, 7, 1785.
    • (14) Guilbert, A. A. Y.; Frost, J. M.; Agostinelli, T.; Pires, E.; Lilliu, S.; Macdonald, J. E.; Nelson, J. Chem. Mat. 2014, 26, 1226.
    • (15) McCulloch, I.; Ashraf, R. S.; Biniek, L.; Bronstein, H.; Combe, C.; Donaghey, J. E.; James, D.
    • I.; Nielsen, C. B.; Schroeder, B. C.; Zhang, W. Acc. Chem. Res. 2012, 45, 714.
    • (16) Facchetti, A. Chem. Mat. 2011, 23, 733.
    • (17) Ruehle, V.; Lukyanov, A.; May, F.; Schrader, M.; Vehoff, T.; Kirkpatrick, J.; Baumeier, B.; Andrienko, D. J. Chem. Theor. Comput. 2011, 7, 3335.
    • (18) Mladenović, M.; Vukmirović, N. Adv. Funct. Mater. 2015, 10.1002/adfm.201402435.
    • (19) Miller, A.; Abrahams, B. Phys. Rev. B 1960, 120, 745.
    • (20) Kasha, M. Discuss. Faraday Soc. 1950, 9, 14.
    • (21) Englman, R.; Jortner, J. Mol. Phys. 1970, 18, 145.
    • (22) Marcus, R. J. Chem. Phys. 1956, 24, 966.
    • (23) Fornari, R. P.; Troisi, A. Phys. Chem. Chem. Phys. 2014, 16, 9997.
    • (24) Vukmirovic, N. Phys, Chem. Chem. Phys. 2013, 15, 3543.
    • (25) Vukmirovic, N.; Wang, L.-W. Appl. Phys, Lett. 2010, 97.
    • (26) Vukmirovic, N.; Wang, L.-W. J. Phys. Chem. B 2011, 115, 1792.
    • (27) Nitzan, A. Chemical Dynamics in Condensed Phases; Oxford University Press: New York, 2006.
    • (28) Kuhn, O.; May, V. Charge and Energy Transfer Dynamics in Molecular Systems; WileyVCH: Weinheim, 2011.
    • (29) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.
    • (30) Holstein, T. Ann. Phys. (NY) 1959, 8, 325.
    • (31) Emin, D. Phys. Rev. Lett. 1974, 32, 303.
    • (32) Skourtis, S. S. Chem. Phys. Lett. 2003, 372, 224.
    • (33) Birks, J. Organic Molecular Photophysics: v. 2; Wiley: New York, 1975.
    • (34) Tully, J. C. J. Chem. Phys. 1990, 93, 1061.
    • (35) Munn, R. W.; Silbey, R. J. Chem. Phys. 1985, 83, 1843.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | EXTMOC
  • EC | ESTYMA

Cite this article