Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
The aims of this thesis are to establish the therapeutic value of two anti-glycan mAbs produced in-house, to develop an immunisation protocol with the aim of improving the immunogenicity tumour-associated glycolipids with the intention of producing therapeutically valuable mAbs and to determine the implication of a mAb with the ability to induce apoptosis in colorectal cancer. The anti-glycan mAbs 692/29 and 505/4 have previously been produced in-house and this study aimed to determine their fine specificity using a glycan array. 692/29 displayed binding predominantly to Lewis b as well as Lewis y-containing glycans. 505/4 was discovered to bind to sialyl Lewis a as well as sialyl di-Lewis a, with no cross-reactivity with other blood group antigens. This was compared to other anti-Lewis mAbs, with differences in specificity being observed. Characterisation of 505/4 mAb distribution showed binding to 80% of colorectal tumours and low levels of binding to normal tissues by IHC, suggesting it may be therapeutically useful. This thesis aimed to assess the ability of 505/4 and 692/29 to meditate immune mediated and non-immune mediated cell death as well as to determine whether non-immune-mediated cell death would be a desirable therapeutic property. Resistance to apoptosis is one of the hallmarks of cancer cells and mAbs stimulating apoptosis may not be very effective. Alternatively, cancer cells are driven to initiate apoptosis by genomic and other aberrations thus if pro-apoptotic pathways are stimulated these cells may be more susceptible to death than normal cells. To investigate the significance of apoptosis in cancer a large tissue microarray of colorectal tumours was assessed for apoptosis and its relationship to patient prognosis. Cleaved caspase-3 is a good marker of apoptosis as it is the executioner caspase for both the extrinsic and intrinsic pathways. Immunohistochemical analysis of colorectal tumour samples revealed that a high expression of cleaved caspase-3 in tumour was associated with good prognosis in colorectal cancer. This suggested that some tumours were still susceptible to apoptotic death but some are resistant and an alternative mechanism of cell death may be an advantage in these tumours. High expression of cleaved caspase-3 in the tumour-associated stroma was also an independent marker of good prognosis in colorectal cancer. This may be because apoptosis of the tumour-associated stroma reduces the level of pro-tumour signals originating from tumour-associated immune cells and stromal cells. As the tumour microenvironment can act in an immunosuppressive and pro-tumour manner, the ability of a mAb to induce direct cell death without the need for effector cells or complement would be an advantage. Lewis y and Lewis b are blood group antigens commonly overexpressed on the surface of a range of cancers. Characterisation of effector functions of 505/4 and 692/29 demonstrated that both mAbs have the ability to mediate apoptosis by antibody dependent cellular cytotoxicity, complement dependent cytotoxicity and cause direct cell death in an oncosis-like manner. Comparison with other anti-Lewis mAbs demonstrated that a number of anti-Lewis mAbs can induce direct cell death independently of apoptosis. Thus, they could effectively target apoptotic sensitive and resistant colorectal cancers. Tumours aberrantly express glycolipids and these molecules may be involved in a number of cellular pathways. In addition a large proportion of anti-glycan mAbs, including 505/4 and 692/29 in this thesis, have displayed the ability to induce direct cell death. Therefore this thesis aimed to develop an immunisation protocol capable of increasing the immunogenicity of tumour-associated glycolipid for the production of anti-tumour glycolipid mAbs directed against ovarian cancer. This study suggests that the incorporation of tumour glycolipid into liposomes and their immunisation along with the iNKT cell adjuvant α-galactosylceramide, elicits an anti-tumour glycolipid immune response, which can yield IgG mAbs capable of binding a high proportion of ovarian cancers. In summary, this thesis confirmed specificity of 692/29 to Lewis y and Lewis b and 505/4 to sialyl Lewis a and sialyl di-Lewis a. Furthermore, this thesis demonstrated a promising tissue distribution of 505/4 in vitro. Characterisation of mAb effector functions suggest that both Lewis y and sialyl Lewis a directed mAbs have the ability to cause direct cell death, independently of apoptosis in antigen positive cells, as well as the ability to cause immune-mediated cell death. This may be an important factor in the immune-suppressive tumour microenvironment. Furthermore, this thesis provides the basis for the production of new anti-glycolipid antibodies that may also be able to induce direct cell death.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Cavanna, B., Jiang, H., Allaria, S., Carpo, M., Scarlato, G. & Nobile-Orazio, E. (2001). Anti-GM(2) IgM antibody-induced complement-mediated cytotoxicity in patients with dysimmune neuropathies. J Neuroimmunol, 114, 226-31.
    • Chan, H.T., Hughes, D., French, R.R., Tutt, A.L., Walshe, C.A., Teeling, J.L., Glennie, M.J. & Cragg, M.S. (2003). CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res, 63, 5480-9.
    • Chang, F., Li, R. & Ladisch, S. (1997). Shedding of gangliosides by human medulloblastoma cells. Exp Cell Res, 234, 341-6.
    • Chapman, P.B., Yuasa, H. & Houghton, A.N. (1990). Homophilic binding of mouse monoclonal antibodies against GD3 ganglioside. J Immunol, 145, 891-8.
    • Charpin, C., Bhan, A.K., Zurawski, V.R., Jr. & Scully, R.E. (1982). Carcinoembryonic antigen (CEA) and carbohydrate determinant 19-9 (CA 19-9) localization in 121 primary and metastatic ovarian tumors: an immunohistochemical study with the use of monoclonal antibodies. Int J Gynecol Pathol, 1, 231-45.
    • Chen, H., Yang, W.W., Wen, Q.T., Xu, L. & Chen, M. (2009). TGF-beta induces fibroblast activation protein expression; fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM [corrected]. Exp Mol Pathol, 87, 189-94.
    • Chen, M., Won, D.J., Krajewski, S. & Gottlieb, R.A. (2002). Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem, 277, 29181-6.
    • Cheong, J.W., Chong, S.Y., Kim, J.Y., Eom, J.I., Jeung, H.K., Maeng, H.Y., Lee, S.T. & Min, Y.H. (2003). Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res, 9, 5018-27.
    • Cheresh, D.A., Honsik, C.J., Staffileno, L.K., Jung, G. & Reisfeld, R.A. (1985). Disialoganglioside GD3 on human melanoma serves as a relevant target antigen for monoclonal antibody-mediated tumor cytolysis. Proc Natl Acad Sci U S A, 82, 5155-9.
    • Cherukuri, A., Cheng, P.C. & Pierce, S.K. (2001a). The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol, 167, 163-72.
    • Cherukuri, A., Cheng, P.C., Sohn, H.W. & Pierce, S.K. (2001b). The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity, 14, 169-79.
    • Chester, M.A. (1998). IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. Eur J Biochem, 257, 293-8.
    • Cheung, M.C., Maceachern, J.A., Haynes, A.E., Meyer, R.M. & Imrie, K. (2009). I-Tositumomab in lymphoma. Curr Oncol, 16, 32-47.
    • Cheung, N.K., Kushner, B.H., Cheung, I.Y., Kramer, K., Canete, A., Gerald, W., Bonilla, M.A., Finn, R., Yeh, S.J. & Larson, S.M. (1998). Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J Clin Oncol, 16, 3053-60.
    • Cheung, N.K., Saarinen, U.M., Neely, J.E., Landmeier, B., Donovan, D. & Coccia, P.F. (1985). Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res, 45, 2642-9.
    • Chou, H.H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K.L., Muchmore, E.A., Nelson, D.L., Warren, S.T. & Varki, A. (1998). A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A, 95, 11751-6.
    • Chu, X., Fu, X., Zou, L., Qi, C., Li, Z., Rao, Y. & Ma, K. (2007). Oncosis, the possible cell death pathway in astrocytes after focal cerebral ischemia. Brain Res, 1149, 157-64.
    • Clynes, R.A., Towers, T.L., Presta, L.G. & Ravetch, J.V. (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med, 6, 443-6.
    • Cobb, B.A., Wang, Q., Tzianabos, A.O. & Kasper, D.L. (2004). Polysaccharide processing and presentation by the MHCII pathway. Cell, 117, 677-87.
    • Coberly, S.K., Chen, F.Z., Armanini, M.P., Chen, Y., Young, P.F., Mather, J.P. & Loo, D.T. (2009). The RAV12 monoclonal antibody recognizes the N-linked glycotope RAAG12: expression in human normal and tumor tissues. Arch Pathol Lab Med, 133, 1403-12.
    • Coelho, V., Krysov, S., Ghaemmaghami, A.M., Emara, M., Potter, K.N., Johnson, P., Packham, G., Martinez-Pomares, L. & Stevenson, F.K. (2010). Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A, 107, 18587-92.
    • Cohen, M.H., Gootenberg, J., Keegan, P. & Pazdur, R. (2007). FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist, 12, 713-8.
    • Cohen, M.H., Shen, Y.L., Keegan, P. & Pazdur, R. (2009a). FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 14, 1131-8.
    • Cohen, N.R., Garg, S. & Brenner, M.B. (2009b). Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol, 102, 1-94.
    • Cohenuram, M. & Saif, M.W. (2007). Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs, 18, 7-15.
    • Coiffier, B., Lepage, E., Briere, J., Herbrecht, R., Tilly, H., Bouabdallah, R., Morel, P., Van Den Neste, E., Salles, G., Gaulard, P., Reyes, F., Lederlin, P. & Gisselbrecht, C. (2002). CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med, 346, 235-42.
    • Cooper, G.M. (2000). The cell; A molecular approach Second Edition. Sinauer Associates.
    • Coppola, D., Khalil, F., Eschrich, S.A., Boulware, D., Yeatman, T. & Wang, H.G. (2008). Downregulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer, 113, 2665-70.
    • Cragg, M.S. & Glennie, M.J. (2004). Antibody specificity controls in vivo effector mechanisms of antiCD20 reagents. Blood, 103, 2738-43.
    • Cragg, M.S., Morgan, S.M., Chan, H.T., Morgan, B.P., Filatov, A.V., Johnson, P.W., French, R.R. & Glennie, M.J. (2003). Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood, 101, 1045-52.
    • Craigen, J.L., Wendy, J.M. Mackus, Patrick Engleberts, Sam R Miller, Sue Speller, Louise C Chamberlain, Bill G Davis, PhD, Simon M McHugh, Ed Bullmore, Charles J Cox, Sally Wetten, Gerrard Perdock, Joost M Bakker, Jan G. J. van de Winkel, and Parren P.H.W. (2009). Ofatumumab, a Human Mab Targeting a Membrane-Proximal Small-Loop Epitope On CD20, Induces Potent NK Cell-Mediated ADCC. In 51st American Society of Hematology Annual Meeting and Exposition New Orleans, LA.
    • Crocker, P.R., Paulson, J.C. & Varki, A. (2007). Siglecs and their roles in the immune system. Nat Rev Immunol, 7, 255-66.
    • CRUK. (2010). Cancer in the UK: July 2010.
    • Dabelsteen, E. (1996). Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol, 179, 358-69.
    • Dall'Acqua, W.F., Kiener, P.A. & Wu, H. (2006). Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem, 281, 23514-24.
    • Daniels, I., Turzanski, J. & Haynes, A.P. (2008). A requirement for calcium in the caspase-independent killing of Burkitt lymphoma cell lines by Rituximab. Br J Haematol, 142, 394-403.
    • Davis, T.A., Kaminski, M.S., Leonard, J.P., Hsu, F.J., Wilkinson, M., Zelenetz, A., Wahl, R.L., Kroll, S., Coleman, M., Goris, M., Levy, R. & Knox, S.J. (2004). The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res, 10, 7792-8.
    • de Heer, P., de Bruin, E.C., Klein-Kranenbarg, E., Aalbers, R.I., Marijnen, C.A., Putter, H., de Bont, H.J., Nagelkerke, J.F., van Krieken, J.H., Verspaget, H.W., van de Velde, C.J. & Kuppen, P.J. (2007). Caspase-3 activity predicts local recurrence in rectal cancer. Clin Cancer Res, 13, 5810-5.
    • de Leon, J., Fernandez, A., Mesa, C., Clavel, M. & Fernandez, L.E. (2006). Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother, 55, 443-50.
    • Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D.A., Jin, S. & White, E. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10, 51-64.
    • Delord, J.P., Allal, C., Canal, M., Mery, E., Rochaix, P., Hennebelle, I., Pradines, A., Chatelut, E., Bugat, R., Guichard, S. & Canal, P. (2005). Selective inhibition of HER2 inhibits AKT signal transduction and prolongs disease-free survival in a micrometastasis model of ovarian carcinoma. Ann Oncol, 16, 1889-97.
    • Dennis, J.W., Granovsky, M. & Warren, C.E. (1999). Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta, 1473, 21-34.
    • Devine, P.L., Clark, B.A., Birrell, G.W., Layton, G.T., Ward, B.G., Alewood, P.F. & McKenzie, I.F. (1991). The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res, 51, 5826-36.
    • Dhein, J., Daniel, P.T., Trauth, B.C., Oehm, A., Moller, P. & Krammer, P.H. (1992). Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on crosslinking of APO-1 cell surface antigens. J Immunol, 149, 3166-73.
    • Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. (2003). AID mediates hypermutation by deaminating single stranded DNA. J Exp Med, 197, 1291-6.
    • Dinndorf, P.A., Andrews, R.G., Benjamin, D., Ridgway, D., Wolff, L. & Bernstein, I.D. (1986). Expression of normal myeloid-associated antigens by acute leukemia cells. Blood, 67, 1048- 53.
    • Duckworth, C.A. & Pritchard, D.M. (2009). Suppression of apoptosis, crypt hyperplasia, and altered differentiation in the colonic epithelia of bak-null mice. Gastroenterology, 136, 943-52.
    • Dullforce, P., Sutton, D.C. & Heath, A.W. (1998). Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nat Med, 4, 88-91.
    • Duncan, T.J., Watson, N.F., Al-Attar, A.H., Scholefield, J.H. & Durrant, L.G. (2007). The role of MUC1 and MUC3 in the biology and prognosis of colorectal cancer. World J Surg Oncol, 5, 31.
    • Dunn, G.P., Bruce, A.T., Sheehan, K.C., Shankaran, V., Uppaluri, R., Bui, J.D., Diamond, M.S., Koebel, C.M., Arthur, C., White, J.M. & Schreiber, R.D. (2005). A critical function for type I interferons in cancer immunoediting. Nat Immunol, 6, 722-9.
    • Durrant, L.G., Chapman, M.A., Buckley, D.J., Spendlove, I., Robins, R.A. & Armitage, N.C. (2003). Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother, 52, 638-42.
    • Durrant, L.G., Harding, S.J., Green, N.H., Buckberry, L.D. & Parsons, T. (2006). A new anticancer glycolipid monoclonal antibody, SC104, which directly induces tumor cell apoptosis. Cancer Res, 66, 5901-9.
    • Durrant, L.G., Singhal, A., Jacobs, E. & Price, M.R. (1993). Development Of 2nd-Generation Monoclonal-Antibodies Recognizing Lewis(Y/B) Antigen By Antiidiotypic Immunization. Hybridoma, 12, 647-660.
    • Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. (1980). An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell, 19, 981-92.
    • Eguchi, Y., Shimizu, S. & Tsujimoto, Y. (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res, 57, 1835-40.
    • El-Rayes, B.F. & LoRusso, P.M. (2004). Targeting the epidermal growth factor receptor. Br J Cancer, 91, 418-24.
    • FDA. (1997). FDA approval of Rituximab.
    • FDA. (1998). Approval of Trastuzumab, Genentech (ed).
    • FDA. (2002). Rituximab Approval Information - Licensing Action.
    • FDA. (2004). FDA approval of Cetuximab (Erbitux), Inc, I.S. (ed). FDA: Branchburg.
    • FDA. (2009). FDA Approves New Treatment for Chronic Lymphocytic Leukemia. US Food and Drug Administration.
    • FDA. (2010). Mylotarg (gemtuzumab ozogamicin): Market Withdrawal.
    • Feizi, T. (1985). Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature, 314, 53-7.
    • Fernandes, D.M., Baird, A.M., Berg, L.J. & Rock, K.L. (1999). A monoclonal antibody reactive with a 40-kDa molecule on fetal thymocytes and tumor cells blocks proliferation and stimulates aggregation and apoptosis. J Immunol, 163, 1306-14.
    • Fernandez, L.E., Gabri, M.R., Guthmann, M.D., Gomez, R.E., Gold, S., Fainboim, L., Gomez, D.E. & Alonso, D.F. (2010). NGcGM3 ganglioside: a privileged target for cancer vaccines. Clin Dev Immunol, 2010, 814397.
    • Fink, S.L. & Cookson, B.T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 73, 1907-16.
    • Fishwild, D.M., O'Donnell, S.L., Bengoechea, T., Hudson, D.V., Harding, F., Bernhard, S.L., Jones, D., Kay, R.M., Higgins, K.M., Schramm, S.R. & Lonberg, N. (1996). High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol, 14, 845-51.
    • Fong, P.C., Yap, T.A., Boss, D.S., Carden, C.P., Mergui-Roelvink, M., Gourley, C., De Greve, J., Lubinski, J., Shanley, S., Messiou, C., A'Hern, R., Tutt, A., Ashworth, A., Stone, J., Carmichael, J., Schellens, J.H., de Bono, J.S. & Kaye, S.B. (2010). Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol, 28, 2512-9.
    • Foss, D.L., Zilliox, M.J. & Murtaugh, M.P. (2001). Bacterially induced activation of interleukin-18 in porcine intestinal mucosa. Vet Immunol Immunopathol, 78, 263-77.
    • Foy, T.M., Laman, J.D., Ledbetter, J.A., Aruffo, A., Claassen, E. & Noelle, R.J. (1994). gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med, 180, 157-63.
    • Frost, J.D., Hank, J.A., Reaman, G.H., Frierdich, S., Seeger, R.C., Gan, J., Anderson, P.M., Ettinger, L.J., Cairo, M.S., Blazar, B.R., Krailo, M.D., Matthay, K.K., Reisfeld, R.A. & Sondel, P.M. (1997). A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children's Cancer Group. Cancer, 80, 317-33.
    • Fuentes, D., Avellanet, J., Garcia, A., Iglesias, N., Gabri, M.R., Alonso, D.F., Vazquez, A.M., Perez, R. & Montero, E. (2010). Combined therapeutic effect of a monoclonal anti-idiotype tumor vaccine against NeuGc-containing gangliosides with chemotherapy in a breast carcinoma model. Breast Cancer Res Treat, 120, 379-89.
    • Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. (2003). Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med, 198, 267-79.
    • Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E.C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R.K. & Seed, B. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94, 715-25.
    • Fulda, S. (2009). Tumor resistance to apoptosis. Int J Cancer, 124, 511-5.
    • Fung, J.J., Markus, B.H., Gordon, R.D., Esquivel, C.O., Makowka, L., Tzakis, A. & Starzl, T.E. (1987). Impact of Orthoclone OKT3 on liver transplantation. Transplant Proc, 19, 37-44.
    • Gabri, M.R., Otero, L.L., Gomez, D.E. & Alonso, D.F. (2009). Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. J Exp Clin Cancer Res, 28, 146.
    • Galli, G., Nuti, S., Tavarini, S., Galli-Stampino, L., De Lalla, C., Casorati, G., Dellabona, P. & Abrignani, S. (2003). CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med, 197, 1051-7.
    • Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P.H., Trajanoski, Z., Fridman, W.H. & Pages, F. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960-4.
    • Garnier, P., Ying, W. & Swanson, R.A. (2003). Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. J Neurosci, 23, 7967-73.
    • Garrigues, J., Garrigues, U., Hellstrom, I. & Hellstrom, K.E. (1993). Ley specific antibody with potent anti-tumor activity is internalized and degraded in lysosomes. Am J Pathol, 142, 607-22.
    • Gatto, D. & Brink, R. (2010). The germinal center reaction. J Allergy Clin Immunol, 126, 898-907; quiz 908-9.
    • Gennari, R., Menard, S., Fagnoni, F., Ponchio, L., Scelsi, M., Tagliabue, E., Castiglioni, F., Villani, L., Magalotti, C., Gibelli, N., Oliviero, B., Ballardini, B., Da Prada, G., Zambelli, A. & Costa, A. (2004). Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res, 10, 5650-5.
    • Gianni, L. (2008). The "other" signaling of trastuzumab: antibodies are immunocompetent drugs. J Clin Oncol, 26, 1778-80.
    • Gilman, A.L., Ozkaynak, M.F., Matthay, K.K., Krailo, M., Yu, A.L., Gan, J., Sternberg, A., Hank, J.A., Seeger, R., Reaman, G.H. & Sondel, P.M. (2009). Phase I study of ch14.18 with granulocytemacrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children's Oncology Group. J Clin Oncol, 27, 85-91.
    • Ginzburg, L., Kacher, Y. & Futerman, A.H. (2004). The pathogenesis of glycosphingolipid storage disorders. Semin Cell Dev Biol, 15, 417-31.
    • Giroux, M., Schmidt, M. & Descoteaux, A. (2003). IFN-gamma-induced MHC class II expression: transactivation of class II transactivator promoter IV by IFN regulatory factor-1 is regulated by protein kinase C-alpha. J Immunol, 171, 4187-94.
    • Glassy, M.C., Tharakan, J.P. & Chau, P.C. (1988). Serum-free media in hybridoma culture and monoclonal antibody production. Biotechnol Bioeng, 32, 1015-28.
    • Golay, J., Manganini, M., Rambaldi, A. & Introna, M. (2004). Effect of alemtuzumab on neoplastic B cells. Haematologica, 89, 1476-83.
    • Goldenberg, M.M. (1999). Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther, 21, 309-18.
    • Goldstein, N.I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. (1995). Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res, 1, 1311-8.
    • Gown, A.M. & Willingham, M.C. (2002). Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem, 50, 449-54.
    • Green, D.R. & Martin, S.J. (1995). The killer and the executioner: how apoptosis controls malignancy. Curr Opin Immunol, 7, 694-703.
    • Grey, H.M., Hirst, J.W. & Cohn, M. (1971). A new mouse immunoglobulin: IgG3. J Exp Med, 133, 289- 304.
    • Gujral, J.S., Farhood, A. & Jaeschke, H. (2003). Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats. Toxicol Appl Pharmacol, 190, 37-46.
    • Gullick, W.J. (1991). Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull, 47, 87-98.
    • Hakomori, S. (1985). Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res, 45, 2405-14.
    • Hakomori, S. (2002). The glycosynapse. Proc Natl Acad Sci U S A, 99, 225-32.
    • Hakomori, S. & Zhang, Y. (1997). Glycosphingolipid antigens and cancer therapy. Chem Biol, 4, 97- 104.
    • Hakomori, S.I. (2008). Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta, 1780, 325-46.
    • Hakomori, S.I. & Murakami, W.T. (1968). Glycolipids of hamster fibroblasts and derived malignanttransformed cell lines. Proc Natl Acad Sci U S A, 59, 254-61.
    • Hakomori Si, S.I. (2002). The glycosynapse. Proc Natl Acad Sci U S A, 99, 225-32.
    • Hale, G., Dyer, M.J., Clark, M.R., Phillips, J.M., Marcus, R., Riechmann, L., Winter, G. & Waldmann, H. (1988). Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet, 2, 1394-9.
    • Halpern, R., Kaveri, S.V. & Kohler, H. (1991). Human anti-phosphorylcholine antibodies share idiotopes and are self-binding. J Clin Invest, 88, 476-82.
    • Hartley, S.B., Cooke, M.P., Fulcher, D.A., Harris, A.W., Cory, S., Basten, A. & Goodnow, C.C. (1993). Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell, 72, 325-35.
    • Hector, S. & Prehn, J.H. (2009). Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim Biophys Acta, 1795, 117-29.
    • Hellstrom, I., Garrigues, H.J., Garrigues, U. & Hellstrom, K.E. (1990). Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related cell surface antigens. Cancer Res, 50, 2183-90.
    • Hernandez-Campo, P.M., Almeida, J., Matarraz, S., de Santiago, M., Sanchez, M.L. & Orfao, A. (2007). Quantitative analysis of the expression of glycosylphosphatidylinositol-anchored proteins during the maturation of different hematopoietic cell compartments of normal bone marrow. Cytometry B Clin Cytom, 72, 34-42.
    • Hernandez, A.M., Rodriguez, N., Gonzalez, J.E., Reyes, E., Rondon, T., Grinan, T., Macias, A., Alfonso, S., Vazquez, A.M. & Perez, R. (2011). Anti-NeuGcGM3 Antibodies, Actively Elicited by Idiotypic Vaccination in Nonsmall Cell Lung Cancer Patients, Induce Tumor Cell Death by an Oncosis-Like Mechanism. J Immunol.
    • Hettmer, S., McCarter, R., Ladisch, S. & Kaucic, K. (2004). Alterations in neuroblastoma ganglioside synthesis by induction of GD1b synthase by retinoic acid. Br J Cancer, 91, 389-97.
    • Hicklin, D.J. & Ellis, L.M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 23, 1011-27.
    • Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., Akerley, W., van den Eertwegh, A.J., Lutzky, J., Lorigan, P., Vaubel, J.M., Linette, G.P., Hogg, D., Ottensmeier, C.H., Lebbe, C., Peschel, C., Quirt, I., Clark, J.I., Wolchok, J.D., Weber, J.S., Tian, J., Yellin, M.J., Nichol, G.M., Hoos, A. & Urba, W.J. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 363, 711-23.
    • Hofheinz, R.D., al-Batran, S.E., Hartmann, F., Hartung, G., Jager, D., Renner, C., Tanswell, P., Kunz, U., Amelsberg, A., Kuthan, H. & Stehle, G. (2003). Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie, 26, 44-8.
    • Holzl, G. & Dormann, P. (2007). Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res, 46, 225-43.
    • Horejsi, V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev, 191, 148-64.
    • Hu, Y., Turner, M.J., Shields, J., Gale, M.S., Hutto, E., Roberts, B.L., Siders, W.M. & Kaplan, J.M. (2009). Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology, 128, 260-70.
    • Huang, M.M., Borszcz, P., Sidobre, S., Kronenberg, M. & Kane, K.P. (2004). CD1d1 displayed on cell size beads identifies and enriches an NK cell population negatively regulated by CD1d1. J Immunol, 172, 5304-12.
    • Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. & Kabbinavar, F. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 350, 2335-42.
    • Hwang, W.Y. & Foote, J. (2005). Immunogenicity of engineered antibodies. Methods, 36, 3-10.
    • Ichikawa, S. & Hirabayashi, Y. (1998). Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol, 8, 198-202.
    • Itzkowitz, S.H. (1992). Blood group-related carbohydrate antigen expression in malignant and premalignant colonic neoplasms. J Cell Biochem Suppl, 16G, 97-101.
    • Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K. & Hakomori, S. (1998). GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydratecarbohydrate interaction in mouse melanoma B16 cells. J Biol Chem, 273, 9130-8.
    • Izban, K.F., Wrone-Smith, T., Hsi, E.D., Schnitzer, B., Quevedo, M.E. & Alkan, S. (1999). Characterization of the interleukin-1beta-converting enzyme/ced-3-family protease, caspase-3/CPP32, in Hodgkin's disease: lack of caspase-3 expression in nodular lymphocyte predominance Hodgkin's disease. Am J Pathol, 154, 1439-47.
    • James, J.S. & Dubs, G. (1997). FDA approves new kind of lymphoma treatment. Food and Drug Administration. AIDS Treat News, 2-3.
    • Janas, E., Priest, R., Wilde, J.I., White, J.H. & Malhotra, R. (2005). Rituxan (anti-CD20 antibody)- induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol, 139, 439-46.
    • Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J. (2001). Immunobiology: The Immune System in Health and Disease. Garland Science: New York.
    • Jeschke, U., Mylonas, I., Shabani, N., Kunert-Keil, C., Schindlbeck, C., Gerber, B. & Friese, K. (2005). Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res, 25, 1615-22.
    • Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature, 321, 522-5.
    • Jonges, L.E., Nagelkerke, J.F., Ensink, N.G., van der Velde, E.A., Tollenaar, R.A., Fleuren, G.J., van de Velde, C.J., Morreau, H. & Kuppen, P.J. (2001). Caspase-3 activity as a prognostic factor in colorectal carcinoma. Lab Invest, 81, 681-8.
    • Jordanova, E.S., Gorter, A., Ayachi, O., Prins, F., Durrant, L.G., Kenter, G.G., van der Burg, S.H. & Fleuren, G.J. (2008). Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res, 14, 2028-35.
    • Jugdutt, B.I. & Idikio, H.A. (2005). Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem, 270, 177-200.
    • Kakar, S., Aksoy, S., Burgart, L.J. & Smyrk, T.C. (2004). Mucinous carcinoma of the colon: correlation of loss of mismatch repair enzymes with clinicopathologic features and survival. Mod Pathol, 17, 696-700.
    • Kaminski, M.J., MacKenzie, C.R., Mooibroek, M.J., Dahms, T.E., Hirama, T., Houghton, A.N., Chapman, P.B. & Evans, S.V. (1999). The role of homophilic binding in anti-tumor antibody Lannert, H., Bunning, C., Jeckel, D. & Wieland, F.T. (1994). Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett, 342, 91-6.
    • Leadbetter, E.A., Brigl, M., Illarionov, P., Cohen, N., Luteran, M.C., Pillai, S., Besra, G.S. & Brenner, M.B. (2008). NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci U S A, 105, 8339-44.
    • Ledford, H. (2011). Melanoma drug wins US approval. Nature, 471, 561.
    • Leonardos, L., Butler, L.M., Hewett, P.J., Zalewski, P.D. & Cowled, P.A. (1999). The activity of caspase3-like proteases is elevated during the development of colorectal carcinoma. Cancer Lett, 143, 29-35.
    • Levade, T. & Jaffrezou, J.P. (1999). Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta, 1438, 1-17.
    • Levine, B. & Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6, 463-77.
    • Li, F., Lin, B., Hao, Y., Li, Y., Liu, J., Cong, J., Zhu, L., Liu, Q. & Zhang, S. (2011). Lewis Y Promotes Growth and Adhesion of Ovarian Carcinoma-Derived RMG-I Cells by Upregulating Growth Factors. Int J Mol Sci, 11, 3748-59.
    • Li, G., Zhang, L., Chen, E., Wang, J., Jiang, X., Chen, J.H., Wickman, G., Amundson, K., Bergqvist, S., Zobel, J., Buckman, D., Baxi, S.M., Bender, S.L., Casperson, G.F. & Hu-Lowe, D.D. (2010). Dual functional monoclonal antibody PF-04605412 targets integrin alpha5beta1 and elicits potent antibody-dependent cellular cytotoxicity. Cancer Res, 70, 10243-54.
    • Li, J.C. & Li, R. (2007). RAV12 accelerates the desensitization of Akt/PKB pathway of insulin-like growth factor I receptor signaling in COLO205. Cancer Res, 67, 8856-64.
    • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. & Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-89.
    • Li, Y., Williams, M.E., Cousar, J.B., Pawluczkowycz, A.W., Lindorfer, M.A. & Taylor, R.P. (2007). Rituximab-CD20 complexes are shaved from Z138 mantle cell lymphoma cells in intravenous and subcutaneous SCID mouse models. J Immunol, 179, 4263-71.
    • Lin, T.S. (2010). Ofatumumab: a novel monoclonal anti-CD20 antibody. Pharmacogenomics and Personalized Medicine, 3 51-59.
    • Lingwood, D. & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327, 46- 50.
    • Liszewski, M.K., Post, T.W. & Atkinson, J.P. (1991). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol, 9, 431-55.
    • Liu, X.-y., Pop, L.M. & Vitetta, E.S. (2008). Engineering therapeutic monoclonal antibodies, Vol. 222. pp. 9-27.
    • Liu, X. & Schnellmann, R.G. (2003). Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J Pharmacol Exp Ther, 304, 63-70.
    • Liu, X., Van Vleet, T. & Schnellmann, R.G. (2004). The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol, 44, 349-70.
    • Loo, D., Pryer, N., Young, P., Liang, T., Coberly, S., King, K.L., Kang, K., Roberts, P., Tsao, M., Xu, X., Potts, B. & Mather, J.P. (2007). The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenografts in vivo. Mol Cancer Ther, 6, 856-65.
    • Los, M., Wesselborg, S. & Schulze-Osthoff, K. (1999). The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity, 10, 629-39.
    • Los, M.H., W. (2002). Caspases: Their Role in Cell Death and Cell Survival. Klewer Academic/Plenum Publishers.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article