Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Optical Society of America
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Optics
Light emission at 1.54 μm from an Er-doped amorphous silicon nitride layer coupled to photonic crystal resonators at cryogenic and room temperatures and under varying optical pump powers has been studied. The results demonstrate that small mode volume, high quality factor resonators enhance Er absorption and emission rates at the cavity resonance. Time resolved measurements give 11- to 17-fold Purcell enhancement of spontaneous emission at cryogenic temperatures, and 2.4-fold enhancement at room temperature. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and partial inversion of the Er ions cryogenic temperatures. We estimate that 31% of Er ions are excited at the highest pump power.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. L. Pavesi, “A review of the various approaches to a silicon laser,” Proc. SPIE 4997, 206 (2003).
    • 2. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro. “Energy transfer and 1.54 m m emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107 (2009).
    • 3. R. Li, S. Yerci, and L. Dal Negro “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
    • 4. W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu and Q. M. Wang. “Strong visible and infrared photoluminescence from Er-implanted silicon nitride films,” J. Phys. D: Appl. 41, 135101 (2008).
    • 5. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
    • 6. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    • 7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P.D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819-1821 (1999).
    • 8. M. Loncˇar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680-2682 (2002).
    • 9. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, J. Vucˇkovic´, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
    • 10. Y. Akahane, T. Asano, B-S. Song and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944 (2003).
    • 11. Dirk Englund, Ilya Fushman, and J. Vucˇkovic´, “General recipe for designing photonic crystal cavities,” Opt. Express, 13, 5961 (2005).
    • 12. R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
    • 13. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, J. Vucˇkovic´. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” accepted by JSTQE (2009).
    • 14. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230-253. John Wiley & Sons: New York, 1994.
    • 15. R. H. Hadfield, M. J. Stevens, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846 (2005).
    • 16. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705 (2001).
    • 17. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol'tsman and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527 (2006).
    • 18. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol'tsman, S. A. Hamilton and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56, 364-373 (2009).
    • 19. S.N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008).
    • 20. M. T. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield. B. Baek, S. Nam, S. N. Dorenbos, T. Zijlstra, T. M. Klapwijk, V. Zwiller, “Enhanced telecom wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single Photon Workshop 2009 (Boulder, Colorado, 2009).
    • 21. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer Series in Chemical Physics, Vol. 81, 2005).
    • 22. B. Henderson, G. F. Imbusch. Optical Spectoscopy of Inorganic Solids. Oxford University Press: New York, 1989.
    • 23. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778 (1991).
    • 24. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203-267, Academic Press, 1994.
    • 25. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, pp. 226-227. John Wiley & Sons: New York, 1995.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article