Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
The efficiency of photoelectrochemical reactions is conventionally defined in terms of the ratio between the current responses arising from the collection of carriers at electrical contacts and the incident photon flux at a given wavelength,
i.e. the incident-photon-to-current-efficiency (IPCE). IPCE values are determined by a variety of factors such as the absorption constant of the active layer, bulk and surface recombination of photogenerated carriers, as well as their characteristic diffusion length. These parameters are particularly crucial in nanostructured photoelectrodes, which commonly display low carrier mobility. In this article, we examine the photoelectrochemical responses of a mesoporous TiO2 film in which the IPCE is enhanced by fast extraction of carriers via chemical reactions. TiO2 films are spontaneously formed by destabilisation of colloidal particles at the polarisable interface between two immiscible electrolyte solutions. The photocurrent arises from hole-transfer to redox species confined to the organic electrolyte, which is coupled to the transfer of electrons to oxygen in the aqueous electrolyte. The dynamic photocurrent responses demonstrate that no coupled ion transfer is involved in the process. The interplay of different interfacial length scales, molecularly sharp liquid/liquid boundary and mesoporous TiO2 film, promotes efficiencies above 75% (without correction for reflection losses). This is a significant step change in values reported for these interfaces (below 1%), which are usually limited to sub-monolayer coverage of photoactive molecular or nanoscopic materials.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 B. C. O'Regan and J. R. Durrant, Acc. Chem. Res., 2009, 42, 1799-1808.
    • 2 A. Hagfeldt and M. Gratzel, Chem. Rev., 1995, 95, 49-68.
    • 3 B. Oregan and M. Gratzel, Nature, 1991, 353, 737-740.
    • 4 P. V. Kamat, J. Phys. Chem. C, 2008, 112, 18737-18753.
    • 5 F. Bella, C. Gerbaldi, C. Barolo and M. Graetzel, Chem. Soc. Rev., 2015, 44, 3431-3473.
    • 6 A. Listorti, B. O'Regan and J. R. Durrant, Chem. Mater., 2011, 23, 3381-3399.
    • 7 L. Peter, Acc. Chem. Res., 2009, 42, 1839-1847.
    • 8 M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photonics, 2014, 8, 506-514.
    • 9 S. Kazim, M. K. Nazeeruddin, M. Graetzel and S. Ahmad, Angew. Chem., Int. Ed., 2014, 53, 2812-2824.
    • 10 D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles and I. Riess, J. Phys. Chem. B, 2000, 104, 2053-2059.
    • 11 J. Bisquert, D. Cahen, G. Hodes, S. Ruhle and A. Zaban, 21 D. J. Fermin, H. Jensen, J. E. Moser and H. H. Girault, J. Phys. Chem. B, 2004, 108, 8106-8118. ChemPhysChem, 2003, 4, 85-89.
    • 12 A. Hagfeldt and M. Gratzel, Acc. Chem. Res., 2000, 33, 22 D. J. Fermin, Z. F. Ding, H. D. Duong, P. F. Brevet and 269-277. H. H. Girault, J. Phys. Chem. B, 1998, 102, 10334-10341.
    • 13 X. Y. Yu, M. S. Prevot, N. Guijarro and K. Sivula, Nat. 23 D. J. Fermin, H. D. Duong, Z. F. Ding, P. F. Brevet and Commun., 2015, 6, 7596. H. H. Girault, Phys. Chem. Chem. Phys., 1999, 1, 1461-1467.
    • 14 J. B. Edel, A. A. Kornyshev and M. Urbakh, ACS Nano, 2013, 24 V. J. Cunnane, G. Geblewicz and D. J. Schiffrin, Electrochim. 7, 9526-9532. Acta, 1995, 40, 3005-3014.
    • 15 H. Mehl, M. M. Oliveira and A. J. Gorgatti Zarbin, J. Colloid 25 D. Plana and D. J. Ferm´ın, J. Electroanal. Chem., 2015, DOI: Interface Sci., 2015, 438, 29-38. 10.1016/j.jelechem.2015.09.030.
    • 16 R. A. W. Dryfe, Phys. Chem. Chem. Phys., 2006, 8, 1869-1883. 26 Z. Samec, N. Eugster, D. J. Fermin and H. H. Girault,
    • 17 A. N. J. Rodgers, S. G. Booth and R. A. W. Dryfe, Electrochem. J. Electroanal. Chem., 2005, 577, 323-337. Commun., 2014, 47, 17-20. 27 Q. Zhang, V. Celorrio, K. Bradley, F. Eisner, D. Cherns, W. Yan
    • 18 X. J. Bian, M. D. Scanlon, S. N. Wang, L. Liao, Y. Tang, and D. J. Fermin, J. Phys. Chem. C, 2014, 118, 18207-18213. B. H. Liu and H. H. Girault, Chem. Sci., 2013, 4, 3432-3441. 28 H. Jensen, J. J. Kakkassery, H. Nagatani, D. J. Fermin and
    • 19 P. Ge, A. J. Olaya, M. D. Scanlon, I. Hatay Patir, H. H. Girault, J. Am. Chem. Soc., 2000, 122, 10943-10948. H. Vrubel and H. H. Girault, ChemPhysChem, 2013, 14, 29 H. Jensen, D. J. Fermin, J. E. Moser and H. H. Girault, 2308-2316. J. Phys. Chem. B, 2002, 106, 10908-10914.
    • 20 B. Su, D. J. Fermin, J. P. Abid, N. Eugster and H. H. Girault, 30 D. Ibanez, D. Plana, A. Heras, D. J. Fermin and A. Colina, J. Electroanal. Chem., 2005, 583, 241-247. Electrochem. Commun., 2015, 54, 14-17.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article