Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Smiljanic, R.; Franciosini, E.; Randich, S.; Magrini, L.; Bragaglia, A.; Pasquini, L.; Vallenari, A.; Tautvaisiene, G.; Biazzo, K.; Frasca, A.; Donati, P.; Mena, E. Delgado; Casey, A. R.; Geisler, D.; Villanova, S.; Tang, B.; Sousa, S. G.; Gilmore, G.; Bensby, T.; Francois, P.; Koposov, S. E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Costado, M. T.; Hourihane, A.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L. ... view all 35 authors View less authors (2016)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, QB, QC
Aims. We report the discovery of two Li-rich giants, with A(Li) ~ 1.50, in an analysis of a sample of 40 giants of the open cluster Trumpler 20 (with turnoff mass ~1.8 M⊙). The cluster was observed in the context of the Gaia-ESO Survey.\ud Methods. The atmospheric parameters and Li abundances were derived using high-resolution UVES spectra. The Li abundances were corrected for nonlocal thermodynamical equilibrium (non-LTE) effects.\ud Results. Only upper limits of the Li abundance could be determined for the majority of the sample. Two giants with detected Li turned out to be Li rich: star MG 340 has A(Li)non−LTE = 1.54 ± 0.21 dex and star MG 591 has A(Li)non−LTE = 1.60 ± 0.21 dex. Star MG 340 is on average ~0.30 dex more rich in Li than stars of similar temperature, while for star MG 591 this difference is on average ~0.80 dex. Carbon and nitrogen abundances indicate that all stars in the sample have completed the first dredge-up.\ud Conclusions. The Li abundances in this unique sample of 40 giants in one open cluster clearly show that extra mixing is the norm in this mass range. Giants with Li abundances in agreement with the predictions of standard models are the exception. To explain the two Li-rich giants, we suggest that all events of extra mixing have been inhibited. This includes rotation-induced mixing during the main sequence and the extra mixing at the red giant branch luminosity bump. Such inhibition has been suggested in the literature to occur because of fossil magnetic fields in red giants that are descendants of main-sequence Ap-type stars.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adamów, M., Niedzielski, A., Villaver, E., Nowak, G., & Wolszczan, A. 2012, ApJ, 754, L15
    • Adamów, M., Niedzielski, A., Villaver, E., Wolszczan, A., & Nowak, G. 2014, A&A, 569, A55
    • Alcalá, J. M., Biazzo, K., Covino, E., Frasca, A., & Bedin, L. R. 2011, A&A, 531, L12
    • Ashwell, J. F., Jeffries, R. D., Smalley, B., et al. 2005, MNRAS, 363, L81
    • Aurière, M., Konstantinova-Antova, R., Charbonnel, C., et al. 2015, A&A, 574, A90
    • Aurière, M., Lignières, F., Konstantinova-Antova, R., et al. 2014, in Putting A Stars into Context: Evolution, Environment, and Related Stars, ed. G. Mathys, E. R. Griffin, O. Kochukhov, R. Monier, & G. M. Wahlgren, 444-450
    • Bharat Kumar, Y., Reddy, B. E., Muthumariappan, C., & Zhao, G. 2015, A&A, 577, A10
    • Böcek Topcu, G., Afs¸ar, M., Schaeuble, M., & Sneden, C. 2015, MNRAS, 446, 3562
    • Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
    • Brown, J. A., Sneden, C., Lambert, D. L., & Dutchover, Jr., E. 1989, ApJS, 71, 293
    • Cameron, A. G. W. & Fowler, W. A. 1971, ApJ, 164, 111
    • Carlberg, J. K., Cunha, K., Smith, V. V., & Majewski, S. R. 2012, ApJ, 757, 109
    • Carlberg, J. K., Smith, V. V., Cunha, K., & Carpenter, K. G. 2016, ApJ, 818, 25
    • Carraro, G., Costa, E., & Ahumada, J. A. 2010, AJ, 140, 954
    • Casey, A. R., Ruchti, G., Masseron, T., et al. 2016, ArXiv e-prints, 1603.03038
    • Castilho, B. V., Spite, F., Barbuy, B., et al. 1999, A&A, 345, 249
    • Charbonnel, C. & Balachandran, S. C. 2000, A&A, 359, 563
    • Charbonnel, C. & Do Nascimento, Jr., J. D. 1998, A&A, 336, 915
    • Charbonnel, C. & Zahn, J.-P. 2007a, A&A, 476, L29
    • Charbonnel, C. & Zahn, J.-P. 2007b, A&A, 467, L15
    • Christensen-Dalsgaard, J. 2015, MNRAS, 453, 666
    • de la Reza, R., Drake, N. A., & da Silva, L. 1996, ApJ, 456, L115
    • de la Reza, R., Drake, N. A., Oliveira, I., & Rengaswamy, S. 2015, ApJ, 806, 86
    • de Medeiros, J. R., Lebre, A., de Garcia Maia, M. R., & Monier, R. 1997, A&A, 321, L37
    • Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Optical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Moorwood, 534-545
    • 1 Department for Astrophysics, Nicolaus Copernicus Astronomical Center, ul. Rabian´ska 8, 87-100 Torun´, Poland e-mail:
    • 2 INAF - Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
    • 3 INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, I40127 Bologna, Italy
    • 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
    • 5 INAF - Osservatorio Astronomico di Padova, Vicolo Osservatorio 2, I-35122 Padova, Italy
    • 6 Institute of Theoretical Physics and Astronomy, Vilnius University, Goštauto 12, Vilnius LT-01108, Lithuania
    • 7 INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, I-95123 Catania, Italy
    • 8 Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, I-40127 Bologna, Italy
    • 9 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
    • 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
    • 11 Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile
    • 12 Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-221 00 Lund, Sweden
    • 13 GEPI, Observatoire de Paris, PSL Research University, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, 61 Avenue de l'Observatoire, 75014 Paris, France
    • 14 Université de Picardie Jules Verne, Physics Dpt. 33 rue St Leu, F80000 Amiens, France
    • 15 Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Universitá di Catania, via S. Sofia 78, 95123, Catania, Italy
    • 16 ASI Science Data Center, Via del Politecnico SNC, 00133 Roma, Italy
    • 17 Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Bd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France
    • 18 Instituto de Astrofísica de Andalucía-CSIC, Apdo. 3004, 18080 Granada, Spain
    • 19 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom
    • 20 Departamento de Ciencias Fisicas, Universidad Andres Bello, Republica 220, Santiago, Chile
    • 21 School of Physics, University of New South Wales, Sydney NSW 2052, Australia
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article