LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
Memetic algorithms, which hybridise evolutionary algorithms with local search, are well-known metaheuristics for solving combinatorial optimisation problems. A common issue with the application of a memetic algorithm is determining the best initial setting for the algorithmic parameters, but these can greatly influence its overall performance. Unlike traditional studies where parameters are tuned for a particular problem domain, in this study we do tuning that is applicable to cross-domain search. We extend previous work by tuning the parameters of a steady state memetic algorithm via a ‘design of experiments’ approach and provide surprising empirical results across nine problem domains, using a cross-domain heuristic search tool, namely HyFlex. The parameter tuning results show that tuning has value for cross-domain search. As a side gain, the results suggest that the crossover operators should not be used and, more interestingly, that single point based search should be preferred over a population based search, turning the overall approach into an iterated local search algorithm. The use of the improved parameter settings greatly enhanced the crossdomain performance of the algorithm, converting it from a poor performer in previous work to one of the stronger competitors.

Share - Bookmark

Cite this article