LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Journal: Chemical Science
Languages: English
Types: Article
Subjects: Chemistry
Through the genetic incorporation of a single phenyl azide group into superfolder GFP (sfGFP) at residue 148 we provide a molecular description of how this highly versatile chemical handle can be used to positively switch protein function in vitro and in vivo via either photochemistry or bioconjugation. Replacement of H148 with p-azido-L-phenylalanine (azF) blue shifts the major excitation peak ∼90 nm by disrupting the H-bond and proton transfer network that defines the chromophore charged state. Bioorthogonal click modification with a simple dibenzylcyclooctyne or UV irradiation shifts the neutral-anionic chromophore equilibrium, switching fluorescence to the optimal ∼490 nm excitation. Click modification also improved quantum yield over both the unmodified and original protein. Crystal structures of both the click modified and photochemically converted forms show that functional switching is due to local conformational changes that optimise the interaction networks surrounding the chromophore. Crystal structure and mass spectrometry studies of the irradiated protein suggest that the phenyl azide converts to a dehydroazepine and/or an azepinone. Thus, protein embedded phenyl azides can be used beyond simple photocrosslinkers and passive conjugation handles, and mimic many natural post-translational modifications: modulation though changes in interaction networks.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 K. Lang and J. W. Chin, Chem. Rev., 2014, 114, 4764-4806.
    • 2 C. C. Liu and P. G. Schultz, Annu. Rev. Biochem., 2010, 79, 413-444.
    • 3 W. H. Zhang, G. Otting and C. J. Jackson, Curr. Opin. Struct. Biol., 2013, 23, 581-587.
    • 4 J. W. Chin, Annu. Rev. Biochem., 2014, 83, 379-408.
    • 5 K. Lang and J. W. Chin, ACS Chem. Biol., 2014, 9, 16-20.
    • 6 S. Tyagi and E. A. Lemke, Curr. Opin. Struct. Biol., 2015, 32, 66-73.
    • 7 C. Walsh, Posttranslational modication of proteins : expanding nature's inventory, Roberts and Co. Publishers, Englewood, Colo., 2006.
    • 8 I. Nikic and E. A. Lemke, Curr. Opin. Chem. Biol., 2015, 28, 164-173.
    • 9 C. M. Haney, R. F. Wissner and E. J. Petersson, Curr. Opin. Chem. Biol., 2015, 28, 123-130.
    • 10 S. Reddington, P. Watson, P. Rizkallah, E. Tippmann and D. D. Jones, Biochem. Soc. Trans., 2013, 41, 1177-1182.
    • 11 G. T. Hermanson, Bioconjugate techniques, Elsevier/Academic Press, London, 3rd edn, 2013.
    • 12 S. A. Flemming, Tetrahedron, 1995, 51, 12479-12520.
    • 13 J. Chin, S. Santoro, A. Martin, D. King, L. Wang and P. Schultz, J. Am. Chem. Soc., 2002, 124, 9026-9027.
    • 14 J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang and P. G. Schultz, Science, 2003, 301, 964-967.
    • 15 N. Gritsan and M. Platz, in Organic Azides: Syntheses and Applications, ed. S. Br¨ase and K. Banert, John Wiley & Sons, Ltd., 2010, ch. 11, pp. 311-372.
    • 16 S. C. Reddington, A. J. Baldwin, R. Thompson, A. Brancale, E. M. Tippmann and D. D. Jones, Chem. Sci., 2015, 6, 1159-1166.
    • 17 S. C. Reddington, S. Driezis, A. M. Hartley, P. D. Watson, P. J. Rizkallah and D. D. Jones, RSC Adv., 2015, 5, 77734- 77738.
    • 18 S. C. Reddington, P. J. Rizkallah, P. D. Watson, R. Pearson, E. M. Tippmann and D. D. Jones, Angew. Chem., Int. Ed., 2013, 52, 5974-5977.
    • 19 S. Zhu, M. Riou, C. A. Yao, S. Carvalho, P. C. Rodriguez, O. Bensaude, P. Paoletti and S. Ye, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 6081-6086.
    • 20 J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 16793-16797.
    • 21 J. C. Jewett, E. M. Sletten and C. R. Bertozzi, J. Am. Chem. Soc., 2010, 132, 3688-3690.
    • 22 C. S. McKay and M. G. Finn, Chem. Biol., 2014, 21, 1075- 1101.
    • 23 T. Plass, S. Milles, C. Koehler, C. Schultz and E. A. Lemke, Angew. Chem., Int. Ed., 2011, 50, 3878-3881.
    • 24 A. M. Hartley, A. J. Zaki, A. R. McGarrity, C. Robert-Ansart, A. V. Moskalenko, G. F. Jones, M. F. Craciun, S. Russo,
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    2b3pProtein Data Bank

Share - Bookmark

Cite this article